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 

Abstract - The data collection with Multi Spectral Instrument 

(MSI) onboard Sentinel-2 satellites and the Operational Land 

Imager (OLI) installed on Landsat-8 satellite enhance significantly 

the Earth observation and monitoring with medium spatial 

resolutions and very high temporal frequency. However, although 

these instruments are designed to be similar, they have different 

spectral, spatial and radiometric resolutions. Moreover, relative 

spectral response profiles characterizing the filters responsivities 

of the both instruments are not identical between the homologous 

bands, so some differences are probably expected in the recorded 

land-surface reflectance values and, therefore, their data probably 

cannot be reliably used together. This paper analyse and compare 

the difference between the reflectance in the homologous spectral 

bands of MSI and OLI sensors, visible-near-infrared (VNIR) and 

shortwave infrared (SWIR), for high temporal frequency 

monitoring of soil salinity dynamic in an arid landscapes. In 

addition, their conversion in term of Soil Salinity and Sodicity 

Index (SSSI) and in term of Semi-Empirical Predictive Model 

(SEPM) for soil salinity mapping were compared, and their sensor 

differences were quantified. To achieve these, analyses were 

performed on simulated data and on two pairs of images acquired 

over the same area in July 2015 and August 2017 with one day 

difference between each pair. For simulated data, a field survey 

was organized and 160 soil samples were collected with various 

degrees of soil salinity classes (i.e., extreme, very high, high, 

moderate, low, and non-saline). The bidirectional reflectance 

factor was measured above each soil sample in a Goniometric-

Laboratory using an Analytical Spectral Devices (ASD) FieldSpec-

4 Hi-Res (high resolution) spectroradiometer. Then, these 

measurements were resampled and convolved in the solar-

reflective bands of SMI and OLI using the Canadian Modified 

Simulation of a Satellite Signal in the Solar Spectrum (CAM5S) 

radiative transfer code and the relative spectral response profiles 

characterizing the filters of these instruments. Furthermore, the 

used pairs of images were not cloudy, or cirrus contaminated, and 

without shadow effects. They were radiometrically and 

atmospherically corrected, and the differences related to 

Bidirectional Reflectance Distribution Function (BRDF) were 

normalized. To generate data for analysis, similarly to OLI, MSI 

images were resampled systematically in 30 m by 30 m pixel size 

considering UTM projection and WGS84 datum. The 

comparisons of the surface reflectance, and derived SSSI and 
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SEPM were undertaken in the same way for simulated and images 

data using regression analysis, coefficient of determination (R2), 

and Root Mean Square Difference (RMSD). The results obtained 

demonstrate that the statistical fits between SMI and OLI 

simulated surface reflectance over a wide range of soil samples 

with different salinity degrees reveals an excellent linear 

relationship (R2 of 0.99) for all bands, as well as for SSSI and 

SEPM. The RMSD values are null between the NIR and SWIR 

homologous bands, and are insignificant for the other bands (i.e., 

0.003 for coastal and 0.001 for the blue, green, and red bands). 

Moreover, the SSSI show an RMSD of 0.0007 and the SEPM 

express an excellent RMSD around 0.5 dS.m-1 (electrical 

conductivity unit) reflecting a relative error that varies between 

0.001 and 0.05 for salinity classes varying between 2.5 dS.m-1 (non-

saline) and 600 dS.m-1 (extreme salinity), respectively. Likewise, 

the two used pairs of images exhibited very significant fits: R2 of 

0.93 for the costal and R2 ≥ 0.96 for the other bands of land surface 

reflectance, and R2 of 0.95 for SSSI and SEPM. Excellent 

consistency was also observed between the derived products of the 

two sensors, yielding a RMSD values less than 0.029 (reflectance 

units) for the bands and less than 0.004 for SSSI. While, the 

calculated RMSD for the SEPM fluctuate between 0.12 and 2.65 

dS.m-1, respectively, of non-saline and extreme salinity classes, 

which means that the relative errors varies between 0.005 and 0.03 

for the considered soil salinity classes. Therefore, in the light of 

these results obtained, we can conclude that the MSI and OLI 

sensors can be used jointly to characterize and to monitor 

accurately the soil salinity and it’s dynamic in time and space in 

arid landscape, provided that rigorous preprocessing issues 

(sensor calibration, atmospheric corrections, and BRDF 

normalization) must be addressed before. 

 
Index Terms - Sentinel-MSI, Landsat-OLI, Spectroradiometric 

measurements, Simulated data, Images data, Soil salinity, Soil salinity 

and sodicity index, Semi-empirical model, Arid landscape 

 

I. INTRODUCTION 

RID landscapes are seriously facing challenge of spatial 

and temporal distribution of soil salinity, particularly 

during drought periods [1], due to water quality and 

scarcity, the high temperature and the increased 
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evapotranspiration rate [2]. In addition to water stress, these 

landscapes are vulnerable to salinization, marginality and 

desertification as a consequences of human activities [3] and 

global climate change impact [4]. Obviously, these factors have 

significant impacts on land degradation, crop production, food 

security, economic aspects and infrastructure; as well as 

ecosystem functionality, human wellbeing and sustainable 

development [5]. Around the world, soil salinity affect 

approximately 40 to 45% of the Earth land, especially in semi-

arid and arid landscapes [6], and the global cost of irrigation-

induced salinity is estimated around 11 billion US$ a year [7]. 

To remedy this situation in vulnerable landscape to salinization, 

there are methods available to slow down the processes and, 

sometimes, even reverse them. However, remedial actions 

require reliable information to help set priorities and to choose 

the type of action that is most appropriate for a specific location. 

In affected areas, farmers, soil managers, scientists, and 

agricultural engineers need accurate and reliable information on 

the nature, extent, magnitude, severity, and spatial distribution 

of the salinity against which they could take appropriate 

measures [8]. 

Soil salinity monitoring in space and time is complicated by 

salinity’s dynamic nature, due to the influence of management 

practices, water table depth, soil permeability, micro-

topography, water use, rainfall, and salinity of groundwater. 

When the need for repeated measurements in time is multiplied 

by the extensive requirements of a single sampling period, the 

expenditures of time and effort with conventional soil 

sampling procedures increase proportionately. In general, 

measuring electrical conductivity extracted from a saturated 

soil paste at the laboratory (EC-Lab) is the most accurate method 

used for soil salinity mapping [9]. Unfortunately, this method 

is expensive and time consuming, especially for regular 

monitoring over a long period, and for comparisons over large 

areas [10,11]. During the last two decades, remote sensing 

technology and image processing methods have outperformed 

these conventional methods. Currently, new remote sensing 

satellite instruments measuring soil salinity, coupled with 

modeling, programming, and mapping in GIS environment 

have significantly improved the potential for soil salinity 

monitoring in space with a very high temporal frequency [12-

16]. The main advantage of remote sensing is the ability to map 

large areas at a relatively low cost by collecting information at 

regular intervals; therefore, monitoring becomes easier. This 

allows not only for the appropriate remedial action to be taken, 

but also for the monitoring of the effectiveness of any ongoing 

remediation or preventative measures, which facilitate 

monitoring, management and decision-making [17]. 

Furthermore, actually, the availability of the new generation 

of medium spatial resolution, such as Multi-Spectral 

Instruments (MSI) on board Sentinel-2 satellites and 

Operational Land Imager (OLI) sensor installed on Landsat-8 

platform, offers new opportunities for long-term high-

temporal frequency for Earth surfaces’ observation and 

monitoring [18]. The free-availability of their data 

significantly advances the virtual constellation paradigm for 

mid-resolutions land imaging [19-21]. Thanks to the 

improvement of their spectral, radiometric, and temporal 

resolutions, they can expand the range of their applications to 

several natural resources and environmental domains for 

monitoring, assessing and investigating [22]. The orbits of the 

both satellites are designed to ensure a revisiting interval time 

of approximately less than 5 days [23], thereby substantially 

increasing monitoring capabilities of the Earth’s surface and 

ecosystems [24]. Their spectral resolutions and configurations 

are designed in such a way that there is a significant match 

between the homologous spectral bands [24,25]. However, 

depending on the spectral sensitivity of the target under 

investigation [26], sensor radiometric drift calibration [27], 

atmospheric corrections [28], surface reflectance anisotropy 

[29], and sensors co-registration [30,31], it is plausible that the 

natural surface-reflectance between MSI and OLI may be 

different. In addition, the relative spectral response profiles 

characterizing the filters (spectral responsivities) of the both 

instruments are not identical between the homologous bands, 

so some differences are probably expected in the recorded 

land-surface reflectance values; therefore, their data cannot be 

reliably used together [32,33]. Obviously, the importance of 

these differences depends on the application (spectral 

characteristics of the observed target) and on the approach 

adopted to perform time series analyses, mapping or change 

detection exploiting both instruments [26]. For instance, it is 

plausible that the extraction of soil salinity information in time 

over arid landscape using surface reflectance, empirical, semi-

empirical, and/or physical approaches, can affected the results 

comparison. 

Likewise, in addition to the remote sensing sensors 

technology improvement and innovation, several image 

processing methods and models were developed and applied for 

soil salinity retrieval. Based on simulated data and satellite 

images acquired with several sensors (TM, ETM+, OLI, MSI, 

ALI EO-1, and WorldView-3), numerous studies revealed that 

spectral confusion occurs in the visible and near-infrared 

(VNIR) spectral domain between the salt crust and the artifacts 

of soil optical properties. While other studies have shown that 

the shortwave infrared (SWIR) spectral bands allows better 

discrimination among salt-affected soil classes. Shrestha [34] 

concluded that the SWIR bands were the most correlated with 

soil salinity. Bannari et al. [14, 35-37] found that the SWIR 

bands of ALI, OLI, SMI and WV3 offers the best potential for 

soil salinity detection and discrimination. Considering different 

soil types and geographic locations, Leone et al. [38], Odeh and 

Onus [39], and Zhang et al. [40] demonstrated that the SWIR 

bands could be used for soil salinity estimation in agricultural 

fields better than other spectral domains. Chapman et al. [41] 

showed that the SWIR bands of TM provide excellent 

discrimination of evaporite mineral zones in salt flats. Drake 

[42] described the various absorption peaks of the salts found 

in evaporite minerals in the SWIR wavelengths. The study 

undertaken by Hawari [43] showed that the absorption features 

in SWIR bands are consistent with the detection of the gypsum, 

halite, calcium carbonate, and sodium bicarbonate. According 

to Nawar et al. [44], the SWIR bands of ASTER exhibited the 

highest contribution for soil salinity estimation. Moreover, 

another study [45] indicated that the SWIR bands of the ETM+ 

sensor increases the accuracy of the soil salinity prediction. 

This paper analyse and compare the difference between land-

surface reflectance in the homologous spectral bands of MSI 

and OLI sensors, VNIR and SWIR, for soil salinity dynamic 

monitoring in an arid landscapes. In addition, comparisons were 
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carried out in terms of conversion of these surface reflectance 

to the Soil Salinity and Sodicity Index (SSSI) and to the Semi-

Empirical Predictive Model (SEPM) for salt-affected soil 

mapping.  

II. MATERIAL AND METHOD 

Fig. 1 illustrate the used methodology; which is structured 

in four steps exploiting two independent datasets: simulated 

and images data. For simulated data, a field campaign was 

organized and 160 soil samples were collected with various 

degrees of soil salinity classes (i.e., extreme, very high, high, 

moderate, and low) including non-saline soil samples. The 

bidirectional reflectance factor was measured above each soil 

sample in a Goniometric-Laboratory using an Analytical 

Spectral Devices (ASD) FieldSpec-4 high resolution (Hi-Res) 

spectroradiometer [46]. The required preprocessing steps to 

allow their meaningful and accurate use and comparison were 

then carried out. Indeed, all measured spectra were resampled 

and convolved in the solar-reflective spectral bands of 

Sentinel-MSI and Landsat-OLI sensors using the Canadian 

Modified Simulation of a Satellite Signal in the Solar Spectrum 

(CAM5S) [47] based on Herman radiative transfer code 

(RTC), and the relative spectral response profiles 

characterizing the filters of each instruments in the VNIR and 

SWIR bands. While, the two pairs of images were acquired 

with Sentinel-MSI and Landsat-OLI sensors over the same 

study site in July 2015 and August 2017 with one day 

difference between each pair. They were not cloudy, or cirrus 

contaminated, and without shadow effects because 

topographic variations are absent in the study area. They were 

radiometrically and atmospherically corrected to transform 

them to the ground surface reflectance, and the Bidirectional 

Reflectance Distribution Function (BRDF) were normalized to 

allow their meaningful comparison correctly. Finally, the 

standardized reflectance (simulated and images data) were 

converted in terms of SSSI and SEPM for soil salinity 

mapping. For comparison and sensor differences 

quantification, statistical fits were conducted using linear 

regression analysis (p < 0.05), coefficient of determination 

(R2), and the Root Mean Square Difference (RMSD) was 

calculated. It is important to precise that subsequently to the 

spectroradiometric measurements, in the laboratory, soil 

chemical analyses (cations and anions: Ca2+, Mg2+, Na+, K+, 

Cl- and SO4
2-), the soil reaction (pH) and the electrical 

conductivity (EC-Lab) were extracted from a saturated soil 

paste, as well as the sodium adsorption ratio (SAR) being 

calculated [9]. These parameters provides reliable information 

about the degree of salinity in each considered soil sample, and 

thus help to understand the close relationship between the salt 

content values in each soil sample and its spectral behavior.    

 

Fig 1. Flowchart of the methodology. 

 

A. Study Site 

The Kingdom of Bahrain (25°32′ and 26°00′N, 50°20′ and 

50°50′E) is an archipelago of 33 islands located in the Arabian 

Gulf, east of Saudi Arabia and west of Qatar (Fig. 2) with a 

total land area of about 778.40 km2. According to the aridity 

criteria and the great variations in climatic conditions, Bahrain 

has an arid to extremely arid environment [48]. The climate is 

characterized by very high summer temperatures of an average 

45°C during June-September and an average of approximately 

17°C in winter from December-March. Rain is sparse, and 

occurs primarily from November to March, with an annual 

average of 72 mm, sufficient only to support the most drought-

resistant desert vegetation. Mean annual relative humidity is 

over 70% due to the surrounding Arabian Gulf water, and the 

annual average potential evapotranspiration rate is 2099 mm 

[49]. Under such climatic conditions, where precipitation is 

excessively low to maintain a regular percolation of rainwater 

through the soil, soluble salts are accumulated in the soil, 

influencing soil properties and environment causing low soil 

productivity. Indeed, these factors have significant impacts on 

land degradation, crop production, economic aspects, and 

infrastructure, as well as ecosystem functionality, human 

wellbeing, and sustainable development [50]. Geologically, 

Bahrain is characterized by Eocene and Neocene rocks, which 

are partly covered by Quaternary sediments and a complex of 

Pleistocene deposits. The dominant rocks are limestone and 

dolomitic-limestone with subsidiary marls and shales. The 

leading structure is the north–south axis of the main dome, 

with minor cross-folds predominantly tilting from northeast to 

southwest. The beds are gently inclined towards the coast from 

the center of the main island. The fringes of Bahrain are 

covered by more recent marine and Aeolian sand dunes, which 

were derived from the Arabian land connection across the 

present Arabian Gulf. 

 

Fig 2. Study site (Kingdom of Bahrain). 

 

B. Soil sampling and laboratory analyses    

The soils of Bahrain are characterized by five different classes 

associated with moderate to shallow depths and are closely 

related to the terrain geology and geomorphology [51]. The 

natural Solonchak describes soils with no agricultural activities 

and retain a significant gypsum content (high and very high 

salinity). Then, there is the cultivated Solonchak soil class, 

which is located in areas either currently or previously exposed 

to agricultural activities. The Regosols soil class with moderate 

salinity is depicted as a mixture of raw minerals as well as the 

natural Solonchak soils, with the possibility for growing 

scattered halophytic plants. The miscellaneous land class that is 

represented by a composition of silts and fine sands with low 

salinity is suitable for agriculture. Finally, there is the non-saline 

soil class, which is imported to build artificial islands.  

Based on Bahrain salt-affected soil map, six salinity classes 

are considered (Fig. 3): extreme (class 1), very high (class 2), 

high (class 3), moderate (class 4), low (class 5) and non-saline 

(class 6). The extreme soil salinity class is characterized by the 

presence of high contents of soluble salts and the surface salt 

crust, which is sabkha (C1 in Fig. 3). They are natural 

solonchaks soil (loamy and sandy, highly gypsiferous) devoid of 

any vegetation. The very high saline soils (class 2) are often 

encrusted with an efflorescence of salt crystals and a well-

developed platy structure, which looks like the creation of a new 

sabkha (C2 in Fig. 3). The high salinity soils (class 3) are 

composed of fine, white, sand-sized shell gravel and gravelly 

sand (C3 in Fig. 3); the surface layers are sometimes cemented 
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by salt and are completely devoid of vegetation. The moderate 

soil salinity (class 4) is the dominant class in the southern half 

of Bahrain Island (C4 in Fig. 3). It is calcareous to highly 

calcareous, with calcium carbonate and dominated by shells and 

sand. Very sparse and scattered clumps of halophytic (salt 

tolerant) plants are observed in this class area. Furthermore, in 

the northwest part of Bahrain Island we find the spatial 

distribution of low salinity soils (class 5), whit acceptable 

fertility potential. This class is the only cultivated area in 

Bahrain (about 8% of the total area of the country), which is 

equipped with micro drip irrigation systems (C5 in Fig. 3). 

Finally, the non-saline soil (class 6) describes accurately the 

man-made (artificial) infrastructure, industrial and urban zones 

(C6 in Fig. 3). 

 

Fig 3. Photos of the six considered soil salinity classes (C1 to 

C6).  

 

A total of 160 samples were collected during a very dry period 

from 2 to 7 April 2016, based on the spatial representativeness 

of the six major soil classes as discussed above. Samples were 

collected from the dry upper layer from 0 to 5 cm deep (crust) 

considering an area about 50 × 50 cm without vegetation residue 

(senescent or green) and moisture-free (Fig. 3). Under the field 

conditions the soil moisture contents remained very low and not 

exceeded 0.08% in the all considered samples (Loamy-sandy, 

silty-sandy, silty-clay-loam, highly gypsiferous), thus 

minimizing the impact of soil moisture on the measured spectra 

(Fig. 4) [52,53]. Moreover, observations and remarks about each 

sample (color, brightness, texture, etc.) were noted. The location 

of each point was automatically labeled and recorded using a 35-

mm digital-camera equipped with a 28-mm lens and accurate 

GPS survey ( ≤ ±30 cm) connected in real-time to the GIS 

database.  

After spectroradiometric measurements, which are described 

below, soil samples were crushed and then sieved to obtain the 

˂ 2mm fraction. Then, standard USDA laboratory methods and 

procedures [9] were used to measure the pH, the electrical 

conductivity (EC-Lab), and the major soluble cations (Na+, K+, 

Ca2++, and Mg2+) and anions (CO3
2−, HCO3

−, Cl−, and SO4
2−) 

using extraction from a saturated soil paste, and the SAR was 

also calculated [54]. In addition to the field observations, these 

parameters are considered in this study for the only purpose to 

provide reliable information about the degree of salinity content 

in each considered soil sample assisting the interpretation of 

spectroradiometric measurements and selected pixels from the 

used images. 

 

Fig 4. Spectral signatures of 160 soil samples with different 

degrees of salinity. 

 

C. Spectroradiometric Measurements 

Spectroradiometric measurements were acquired in the 

Goniometric-Laboratory. The bidirectional reflectance spectra 

of soil samples were measured in air-dried conditions using an 

ASD (Analytical Spectral Devices Inc., Longmont, CO, USA) 

FieldSpec-4 Hi-Res (high resolution) spectroradiometer [46]. 

This instrument is equipped with two detectors operating in the 

VNIR and SWIR, between 350 and 2500 nm. It acquires a 

continuous spectrum with a 1.4 nm sampling interval from 350 

to 1000 nm and a 2 nm interval from 1000 to 2500 nm. The 

ASD resamples the measurements in 1-nm intervals, which 

allows the acquisition of 2151 contiguous bands per spectrum. 

The sensor is characterized by the programming capacity of 

the integration time, which allows an increase of the signal-to-

noise ratio (SNR), as well as stability. The data were acquired 

at nadir with a FOV of 25° and a solar zenith angle of 

approximately 5° by averaging 40 measurements. The ASD 

was installed at a height of 60 cm approximately over the 

target, which makes it possible to observe a surface of 

approximately 700 cm2. A laser beam was used to coincide the 

center of the ASD-FOV with the center of the target under 

measurements. The reflectance factor of each soil sample (Fig. 

4) was calculated by rationing target radiance to the radiance 

obtained from a calibrated “spectralon panel” in accordance 

with the method described in Jackson et al. [55]. Corrections 

were made for the wavelength dependence and non-

Lambertian behavior of the panel [56,57]. 

 

D. Sentinel-MSI and Landsat-OLI simulated data 

The measured bidirectional reflectance factors using the 

ASD have a 1-nm interval, which allows the acquisition of 

2151 contiguous hyperspectral bands per spectrum. However, 

most multispectral remote sensing sensors measured the 

reflectance that is integrated over broad bands. Consequently, 

the measured spectra of each soil sample was resampled and 

convolved to match the MSI and OLI solar-reflective spectral 

responses functions characteristics (Fig. 5). In this step, the 

resampling procedure considers the nominal width of each 

spectral band (Table I). Then, the convolution process was 

executed using the CAM5S RTC [47 ]. This fundamental step 

simulates the signal received by the MSI and OLI sensors at 

the top of the atmosphere from a surface reflecting solar and 

sky irradiance at sea level considering the filters responsivities 

of individual sensor band (Fig. 5), and assuming ideal 

atmospheric conditions without scattering and without 

absorption [58-61]. To understand correctly gain insights into 

any reflectance differences between the two sensors due only 

to their spectral responses functions differences, the 160 

simulated sensor reflectance values were generated with 

various salinity degrees. These simulated reflectance in the 

VNIR and SWIR spectral band were fitted between MSI and 

OLI homologous bands using regression analysis (p < 0.05). 

This statistical examination step was used to evaluate the 

strength of the relationship between the reflectance 

information in homologous spectral bands, and the possibility 

to involve the both sensors together for salt-affected soil 

monitoring in time. It is important to note that the MSI-NIR-2 

broad band (band-8: 785 - 900 nm) is not considered in this 

study because it is not a real homologous band of OLI-NIR, 

and it has a greatest reflective band difference with the OLI-

NIR (851–879 nm). In fact, the OLI-NIR spectral response 

function intersects with only 20% of the MSI-NIR-2 response 

function. Moreover, the MSI red-edge bands were not 

considered also as they are not acquired by the OLI sensor. 
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Fig 5. Sentinel-MSI and Landsat-OLI relative spectral 

response profiles characterizing the filters of each spectral 

band in the VNIR (a), and the SWIR (b). 

 

E. Sentinel-MSI and Landsat-OLI images data 

The Sentinel-2 “A and B” satellites were launched, 

respectively, on June 23rd 2015 and March 7th 2017 with the 

identical MSI sensors on board. They were proposed to 

provide continuity to the SPOT missions [24] and to improve 

the Landsat-OLI temporal frequency. In fact, the synergy 

between Sentinel-MSI (A and B) and Landsat-OLI 

significantly increase the temporal resolution for several 

environmental and natural resource applications, such as the 

vigor of vegetation cover, emergency management, soil 

salinity dynamics, water quality, and climate change impact 

analysis at local, regional, and global scales. Sentinel-MSI is 

the result of close collaboration between the European Space 

Agency, the European Commission, industry, service 

providers, and data users. The MSI images the Earth’s surface 

reflectivity with a large FOV (20.6º) in 13 spectral bands, four 

bands with 10-m pixel size (blue, green, red and NIR-1), six 

bands with 20-m (Red-Edge, NIR-2 and SWIR), and three 

bands with 60-m bands (coastal, water vapor and cirrus). The 

swath of each scene is 290 km, permitting global coverage of 

the Earth’s surface every 10 days. The MSI radiometric 

performance is coded in 12 bits, enabling the image acquisition 

in 4095 digital numbers, ensuring radiometric accuracy of less 

than 3% and an excellent SNR [27, 62]. The geometric 

registration precision is better than 0.15 pixels, and it was 

shown that no visual obvious mis-registration was observed 

when the multi-temporal MSI data were used [31]). Table I 

summarizes the effective bandwidth characteristics for MSI.   

 

TABLE I. The Sentinel-MSI and Landsat-OLI effective 

bandwidths and characteristics ( wavelength, SNR = 

signal to noise ratio). 

  

Furthermore, since 1972, the Landsat scientific collabo-

ration program between the NASA and USGS constitute the 

continuous record of the Earth’s surface reflectivity from 

space. Indeed, the Landsat satellites series support nearly five 

decades of a global moderate resolution data collection, 

distribution and archive of the Earth’s continental surfaces 

[63,64] to support research, applications, and climate change 

impact analysis at the global, the regional and the local scales 

[19, 65,66]. In February 11th, 2013, the polar-orbiting Landsat-

8 satellite was launched, transporting two push-broom 

instruments: OLI and TIRS. The OLI sensor collects land-

surface reflectivity in the VNIR, SWIR, and panchromatic 

wavelength with a FOV of 15° covering a swath of 185 km 

with 16 days’ time repetition at the equator. The band passes 

are narrower in order to minimize atmospheric absorption 

features [67], especially the NIR spectral band (0.865 μm). 

Two new spectral bands have been added: a deep blue visible 

shorter wavelength (band 1: 0.433 - 0.453 m) designed 

specifically for water resources and coastal zone investigation, 

and a new SWIR band (9: 1.360 - 1.390 m) for the detection 

of cirrus clouds. Moreover, the OLI design results in a more 

sensitive instrument with a significant amelioration of the SNR 

radiometric performance quantized over a 12-bit dynamic 

range (Level 1 data), raw data are delivered in 16 bit. This SNR 

performance and improved radiometric resolution provide a 

superior dynamic range and reduce saturation problems 

associated with globally maximizing the range of land-surface 

spectral radiance and, consequently, enable better 

characterization of land-cover conditions [68 45]. According 

to Gascon et al. [69 46] and Markham et al. [27], Landsat-OLI 

and Sentinel-MSI on orbit reflective wavelength calibration is 

better than 3%. From geometric point of view, Stumpf et al.  

[70 47] obtained a co-registration accuracy between images 

provided by both missions around ± 3 m by reference to 

accurate ground control point’s measurements. Table I 

summarizes the effective bandwidth characteristics for OLI. In 

this research, two pairs of images data were used. They were 

acquired during the the hottest period in the Middle-East with 

temperatures around 46-48°C. They were not cloudy and not 

contaminated with cirrus, without significant topographic 

variations and, consequently, the shadow effects were absent 

in the study area. The first pair were acquired with one day 

difference, the 29th and 30th of July 2015 for OLI and MSI, 

respectively. The second pair were also recorded with one day 

difference in 18th and 19th August 2017, respectively, for MSI 

and OLI (Fig. 6). This very short time between each pair (MSI 

and OLI) data acquisition is so important to minimize the 

impact of land-use and soil surface conditions changes 

between these sensor observations. 

 

Fig 6.  True color composite of raw OLI and MSI images 

data acquired over Kingdom of Bahrain in July 2015 (left) 

and August 2017 (right).  

 

F. Images data preprocessing  

Prior to launch, the sensors are subject to rigorous 

radiometric and spectral characterization and calibration. 

However, post-launch absolute calibration is an important step 

to establish the relationship between at-sensor radiance and the 

digital number output for each pixel in the different spectral 

bands. Sensor radiometric calibration and atmospheric 

corrections (scattering and absorption) are fundamental 

preprocessing operations to restore the images radiometric 

quality at the ground level. The changes caused by these 

artifacts can be mistakenly attributed to changes in the land use 

and ground bio-physiological components, and errors can 

propagate in all subsequent image processing steps, such as 

spectral indices calculations, multi-temporal analysis, climate 

change modeling, etc. [71,72]. For converting the measured 

digital numbers by MSI and OLI sensors to the apparent 

radiance, the values of the solar zenith angle and rescaling 

coefficients (gain and offset) delivered by USGS-EROS and 

ESA centers were used. Moreover, the CAM5S RTC [47] was 

used for atmospheric conditions simulation to calculate all the 

requested atmospheric correction parameters for MSI and OLI 

spectral bands. This RTC simulates the signal measured at the 

TOA from the Earth’s surface reflecting solar and sky 

irradiance at sea level, while considering the sensors 

characteristics, such as the band passes of the solar-reflective 

spectral bands (Fig. 5), satellite altitude, atmospheric 
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condition, atmospheric model, Sun and sensor geometry, and 

terrain elevation. Consequently, all the requested atmospheric 

correction parameters were calculated and applied to transform 

the apparent reflectance at the TOA to the ground reflectance. 

Table II summarizes the input parameters for the CAM5S RTC 

for each pair of images. To preserve the radiometric integrity 

of the images, absolute radiometric calibration and 

atmospheric effects corrections were combined and corrected 

in one step [73] to generate ground surface reflectance images 

using the Canadian image processing system PCI-Geomatica.  

Furthermore, knowing that Earth’s natural surfaces do not 

have a Lambertian spectral behavior, because both solar and 

observing zenith angles exert a radiometric distortion impact 

on surfaces reflectance, the BRDF problem was normalized. 

According to Roy et al. [66] along the Landsat-OLI bands 

(edges by reference to the image center) the reflectance can 

vary by less than 6% due to this BRDF effects. Moreover, Roy 

et al. [29] reported that this problem can affect the Sentinel-

MSI bands by approximately 8% because of its large FOV. 

Certainly, these differences may constitute a source of errors 

for biophysical and physiological parameters extraction, as 

well as for general remote sensing applications because their 

values as mentioned before are relatively more meaningful 

than the sensor calibration errors [27] and atmospheric 

corrections [69]. To normalize the BRDF influence on the 

ground surface reflectance images of MSI and OLI, a semi-

empirical approach [74] was applied in this research.  

 

TABLE II. Input parameters for the CAM5S RTC (ASL: 

above sea level; GMT: Greenwich Mean Time; ppm: parts 

per million). 

  

G. Data conversion 

For soil salinity detection and mapping, many soil salinity 

spectral indices and models have been proposed in the 

literature [75-78]. A comparative study among several semi-

empirical predictive models based on salinity indices, such as 

Brightness Index (BI), Normalized Difference Salinity Index 

(NDSI), Salinity Indices (SI), ASTER Salinity Index (SI-

ASTER), Soil Salinity and Sodicity Index (SSSI), etc. was 

achieved for accurate salt-affected detection in irrigated 

agricultural land (slight and moderate salinity classes) in North 

Africa and in the arid landscape (slight, moderate, strong and 

very strong salinity classes) in Middle-East [36, 79,80]. The 

results of these studies showed that the SEPM model based on 

SSSI, which integrate the SWIR bands, provided the best 

accuracy for salt-affected soil classes’ detection and mapping. 

Consequently, in this study, the comparisons of SSSI and 

SEPM are undertaken in the same way as surface reflectance 

derived from simulated and images data to quantify the impact 

differences between relative spectral response profiles 

characterizing the filters of homologous bands of MSI and OLI 

sensors. The SSSI and SEPM equations are as follow [35,36]: 

 

 EC-Predicted
 = Cste . [ 4521. (SSSI)2 + 125. (SSSI) + 0.41 ]   (1) 

 SSSI = (
SWIR-1

 . 
SWIR-2

 - 
SWIR-2 

. 
SWIR-2

) / (
SWIR-1

)         (2) 

 

Where: 

EC-Predicted
: SEPM,


SWIR-1

: Reflectance in MSI and OLI SWIR-1 channel, and 


SWIR-2

: Reflectance in MSI and OLI SWIR-2 channel. 

C
st
: Scaling factor, which theoretically enables an up-scaling 

between the spatial information measured in the field and its 

homologous information derived from the image [81]. 

However, in this study case its value is equal to one because 

we are comparing data from the same sources (MSI to OLI 

simulated data, or image to image), and not from the field to 

the image. 

 

H. Statistical analyses  

As discussed previously, the MSI and OLI relative spectral 

response profiles characterizing the filters of each spectral 

band are relatively different (Fig. 5). To examine the impact of 

this difference, statistical analyses were computed using 

“Statistica” software considering simulated and images data. 

The relationships between derived product values (reflectance, 

SSSI and SEPM) from MSI against those from OLI were 

analyzed using a linear regression model (p < 0.05). As well, 

the R2 was used to evaluate the strength of this linear 

relationship. For this process, the resampled and convolved 

spectra of 160 soil samples and images ground reflectance data 

were used, and the homologous values in VNIR and SWIR 

bands of MSI and OLI were compared using the 1:1 line. 

Ideally, these independent variable values should have a 

correspondence of 1:1. Additionally, the RMSD between the 

both sensors was derived for simulated and images data as 

follow [21, 82]:  

  

RMSD =  √∑ (𝑣𝑖
𝑂𝐿𝐼− 𝑣𝑖

𝑀𝑆𝐼)2𝑛
𝑖

𝑛
                                    (3) 

 

where RMSD is the root mean square difference between 

corresponding Landsat-OLI and Sentinel-MSI variables 

values (reflectance, SSSI, and SEPM) derived from simulated 

spectra and  images-pixels, vi is the variable under analysis and 

“ i ” is the number of variable (i = 1 to n).   

III. RESULTS ANALYSES 

A. Soil laboratory analysis and simulated data comparison 

Fig. 4 show that overall, the spectral signatures of the 160 

considered soil samples are controlled by the type of salt 

existing in each soil sample, such as sulfates, chlorides, and/or 

carbonates. The results showed different amplitudes and several 

absorption features depending on the chemical compositions 

and the mineralogy of the existing salts in the selected soil 

samples. Moreover, the spectral signatures are also influenced 

by several factors, such as mineralogical composition, impurity, 

structure, and texture of the soil and salt crystals, and the soil 

optical properties (color brightness, and roughness), 

particularly in the VNIR spectral domain [14]. Furthermore, the 

laboratory analyses of all soil samples revealed that the 

moisture content values are distributed in a very limited range 

between 0 and 0.08%, thus minimizing the impact of moisture 

content on the measured spectra (Fig. 4). In fact, only three 

weak absorption bands near 1350, 1800, and 2208 nm were 
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observed in some samples (atmospheric water vapor absorption 

features at 1440 and 1920 nm are note considered in this 

analysis). While, the other absorption features are automatically 

linked to the salt mineralogy, particularly the gypsum, sodium, 

chloride, halite, calcium carbonate, and sodium bicarbonate, 

which reveals significant absorption features at 980, 1000, 

1190, 1210, 1400, 1450, 1490, 1540, 1748, 1780, 1800, 

1900,1945, 1975, 2175, 2215, 2265, and 2496 nm [14]. These 

observations corroborate findings of other studies [14,43, 53]. 

Otherwise, the major exchangeable cations and anions in the 

considered six soil sample classes (Ca2+, Mg2+, Na+, K+, Cl- and 

SO4
2-), pH, EC-Lab, and SAR values were calculated from the 

sampling points representing each soil class separately and 

summarized in the Table III. The laboratory analyses revealed 

a very high concentration of sodium (Na+) and dominant 

chloride anion (Cl-). Globally, the values of EC-Lab, Na+, and 

SAR increase gradually and very significantly from non-saline 

soil to extreme soil salinity (sabkha). Indeed, the non-saline and 

low soil salinity classes, which support the agricultural system 

in Bahrain, are characterized by low EC-Lab (2.6 ≤ EC-Lab ≤ 4.4 

dS.m-1) and SAR (≤ 10.3). The moderate salinity class was 

characterized by EC-Lab around 7.4 dS.m-1, and SAR nearby 

12.7 representing the dominant soil class in Bahrain and is a 

part of the Regosols soil category that allows for the growth of 

halophytic plants. Contrariwise, the other three soil salinity 

classes with high, very high and extreme salinity content 

showed exceptional EC (67 ≤ EC-Lab ≤ 600 dS.m-1) and very 

high SAR (≥ 99.2) values. These three classes represent the 

natural Solonchak soil category. While, the pH values (7.1 to 

8.6) are very informative as regards the preponderance of 

carbonate and the presence of bicarbonate in the soils which 

contribute significantly to the alkalinity aspect of the soil. 

Clearly, these results confirm our choice of different soil 

salinity classes that represent the truth of arid landscapes, which 

is fundamental for the analyses of the impact of the spectral 

response functions difference on the surface reflectance and the 

products derived from the homologous spectral bands (VNIR 

and SWIR) of the MSI and OLI sensors. 

 

TABLE III. Laboratory determination of pH, EC-Lab and ions 

content in the different soil salinity classes. 

 

Fig. 7 illustrate the scatter plots of SMI and OLI simulated 

surface reflectance values at the top of the atmosphere, which 

were generated from 160 soil samples with unlike salinity 

degrees (2.6 ≤ EC-Lab ≤ 600 dS.m-1) to analyze the impact of 

differences in reflectance due exclusively to dissimilarities in 

spectral response function between homologous spectral bands. 

These scatter plots reveals a very good linear relationship (R2 

of 0.999) between homologous bands whit the slopes and 

intercepts very near to unite and zero, respectively. Table IV 

summarizes the obtained regression fit equations, the 

coefficient of determination and the RMSD between MSI and 

OLI simulated surface reflectance in the homologous bands, as 

well as the derived SSSI and SEPM products. The RMSD 

values are null between the NIR and SWIR homologous bands, 

and are insignificant for the other bands (i.e., 0.003 for coastal 

and 0.001 for the blue, green, and red bands). Highlighting the 

good behavior of SWIR bands, the calculated SSSI values fit 

perfectly with the line 1:1 (R2 of 0.9996) showing a slope of 

1.01, intercept of 0.002, and RMSD of 0.0007 (Fig. 8). 

Moreover, independently to the degrees of salinity in the 

considered soil samples, the simulated SEPM values fit 

perfectly with 1:1 line expressing an excellent coefficient of 

determination (R2 of 0.9994) and a slope near to the unit 

(0.995). The calculated RMSD for the SEPM vary between 

0.003 and 0.5 dS.m-1 (electrical conductivity unit) reflecting a 

relative error that varies between 0.001 and 0.05 for salinity 

classes varying between 2.5 (non-saline) and 600 dS.m-1 

(extreme salinity). Moreover, this difference is identical to the 

electrical conductivity accuracy measurement in the filed using 

electronical instruments [83]. These results pointed out that 

MSI and OLI sensors can be combined for high temporal 

frequency to monitor soil salinity dynamic in time and space in 

an arid landscape. However, it is important to remember that 

these simulations took place in a Goniometric-Laboratory using 

close range measurements protocol assuming indirectly that the 

measured surfaces are homogeneous with Lambertian 

reflectance (by reference to spectralan). In addition, the 

atmospheric scattering and absorption are absent, errors related 

to radiometric calibration and geometric location are also 

absent, no topographic variation, no residual clouds or shadows, 

and no BRDF impact. Evidently, these simulations in a 

controlled environment are ideal comparatively to the real Earth 

observation conditions using images data acquired with MSI 

and OLI sensors and covering a large pixel surface (900 m2) 

with mixt information. 

 

Fig 7. Compared surface reflectance simulated and convolved 

in Sentinel-MSI and Landsat-OLI homologous spectral bands. 

 

Fig 8. Compared SSSI (left) and SEPM (right) derived from 

Sentinel-MSI and Landsat-OLI simulated data. 

 

TABLE IV. Regression fit equations between MSI and OLI 

simulated surface reflectance in the homologous spectral 

bands, and the derived SSSI and SEPM 

 

B. Images results analysis 

The spectral bands of MSI have unlike spatial resolutions 

(10, 20 and 60-m) than those of OLI bands (30-m). To handle 

this spatial difference and to generate data correspondingly to 

OLI images for analyses, MSI images were resampled 

automatically in 30-m pixel size considering UTM projection 

and WGS84 datum. Based on the measured GPS ( ≤ 30 cm) 

coordinates location, the considered 160 sampling points 

representing all salinity classes (approximately 26 pixels per 

class) were carefully located and selected from the homologous 

spectral bands in the booth pair of images. Then, comparisons 

of the surface reflectance, and derived SSSI and SEPM were 

undertaken in the same way as for the simulated data using 

regression analysis, R2, and RMSD. Since the results obtained 

from the two pairs of images are similar (Table V), only the 

results retrieved from the pair acquired in August 2017 are 

presented in Fig. 9. This scatter plots shows the relationship 

between surface reflectance in the VNIR and SWIR 

homologous bands of SMI and OLI sensors acquired over a 

wide range of soil samples with different salinity degrees (2.6 

≤ EC-Lab ≤ 600 dS.m-1). A very good linear relationships 
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between all homologous bands are observed with the slopes and 

intercepts near to unite and zero, respectively. The used images 

in each pair had very significant fits (R2 ≥ 0.96) for green, red, 

NIR and SWIR homologous spectral bands (Fig. 9 and Table 

V). For these bands, the majority of sampling points are located 

around the line 1:1. While, the coastal and blue bands fits with 

R2 of 0.93 and 0.96, respectively. Although these last two bands 

depicts a good fit to the 1:1 line, in general the reflectance are 

relatively over-estimated in MSI than in OLI. This is likely due 

to the correction of scattering effects by aerosols in these short 

wavelengths, as well as to the OLI medium spatial resolution 

compared to the original pixel size of MSI. These observations 

has been also noted in other studies [21]. Furthermore, the 

RMSD values are insignificant for the NIR and SWIR 

homologous bands (≤ 0.009), and are very small (≤0.029) in the 

visible bands (Table V). Globally, the reflectance in OLI visible 

bands are slightly lower against those in MSI.  

Fig. 10 illustrate the relationship between the derived SSSI 

and SEPM products from MSI and OLI data acquired in 2017. 

The SSSI values fit significantly with the line 1:1 (R2 of 0.95) 

showing a slope of 0.97, intercept of 0.00, and RMSD of 0.004. 

Moreover, the predicted salinity values using the SEPM are 

fitting well with 1:1 line expressing an excellent coefficient of 

determination (R2 of 0.95) between the derived information 

from the two sensors, with a slope of 0.97 (near to the unit) and 

intercept of 1.46. This scatter-plot showed also a relative 

underestimation of very high salinity class (200 ≤ EC-Lab ≤ 600 

dS.m-1) in the OLI SEPM than that of MSI. Whereas, the RMSD 

calculated for SEPM varied from 0.12 to 2.65 dS.m-1 for non-

saline and extreme salinity classes, respectively. Almost 

similarly to simulated data, these RMSD reflect relative errors 

varying between 0.005 and 0.03 for the considered soil salinity 

classes (2.6 ≤ EC-Lab ≤ 600 dS.m-1), which are quite identical to 

the electrical conductivity accuracy measurements in the filed 

using electronical instruments [83]. The small RMSD values 

found between homologous bands of the two considered pair of 

images (MSI and OLI) and the derived SSSI and SEPM could 

not be attributed only to sensor spectral response function 

differences. Definitely, in addition to the unlike spatial 

resolutions and the resampling MSI pixels, these relative small 

differences are probably also due to the signal saturation, which 

resulted by the difference in radiometric resolutions between 

both sensors. This saturation may be more pronounced over 

bright and strongly reflective surfaces such as white salt-crust 

areas, especially when specular effect is strongly pronounced. 

It can also be magnified by the non-Lambertian surfaces that 

cause a non-negligible BRDF effects [29], as well as the BRDF 

standardisation (FOV of ±10.3° for MSI rather than ±7.5° for 

OLI), which is based on a semi-empirical model [74]. 

Moreover, it can also be caused by the residual errors of sensor 

radiometric calibration and atmospheric corrections that are 

never perfect, particularly at shorter wavelengths where 

atmospheric scattering impacts are usually greatest, and also 

because the images have not been atmospherically corrected 

pixel by pixel but rather band by band. 

 

Fig 9. Compared surface reflectance acquired with Sentinel-

MSI and Landsat-OLI spectral bands (VNIR and SWIR) 

acquired in August 2017. 

 

In general, independently to the used data (simulated or 

images) the statistical fits found to be highly significant (0.95 ≤ 

R2) and the reached RMSD values ( 0.029) where smaller than 

the accuracy of radiometric calibration process (0.03) as 

demonstrated by Markham et al. [7]. Moreover, despite the 

small differences especially in coastal and blue bands, these 

results pointed out that MSI and OLI sensors can be combined 

for high temporal frequency to monitor soil salinity dynamic in 

time and space in an arid landscape. However, rigorous 

preprocessing issues (sensors calibration, atmospheric 

corrections, and BRDF normalisation) must be addressed 

before the joint use of acquired data with these two sensors. 

This results corroborate the finding of Davis et al. [84] who 

have demonstrated that the two sensors have similar salinity 

modelling skill in Hyde County areas in North Carolina (USA). 

Moreover, although the present paper is focalising specifically 

on soil salinity as a specific target, the results obtained are 

consistent with previous research projects considering several 

other applications around the world. For instance, comparing 

surface reflectance and derived biophysical variables over 

Australian territory, Flood [26] indicated good compatibility 

between SMI and OLI instruments with RMSD  0.03 for 

surface reflectance in VNIR and SWIR bands, and an RMSD 

around 0.05 for biophysical variables. Pastick et al. [85] 

demonstrated that observations made by MSI and OLI can be 

used to monitor land-surface phenology accurately in drylands 

of the Western United States. Vuolo et al. [86] compared 

surface reflectance and biophysical products of many targets 

over six test sites in Europe showed a good relationship 

between these two sensors products, yielding RMSD values 

around 0.03 reflectance units. Some tests performed on 

simulated data and on real images data acquired simultaneously 

with MSI and OLI over a wide variety of land cover types 

(agricultural fields, inland, and open shallow water) showed a 

very high coefficient of determination (R2 of 0.98) between 

homologous bands [18].  Moreover, the comparison of an 

automated approach for burned areas mapping combining OLI 

and MSI data, preprocessed rigorously, showed that both 

sensors have identified similarly the spatial patterns for burned 

areas [87 ]. 

 

Fig 10. Compared SSSI (a) and SEPM (b) derived from 

Sentinel-MSI and Landsat-OLI images data acquired in 

August 2017. 

 

TABLE V. Regression fit equations between MSI and OLI 

image surface reflectance in the homologous spectral bands, 

and the derived SSSI and SEPM   

IV. CONCLUSIONS 

The MSI onboard Sentinel satellites and the OLI installed 

on Landsat-8 satellite are designed to be similar in the 

perspective that their data be used together to support global 

Earth surface reflectance coverage for science and 

development applications at medium spatial resolution and 

near daily temporal resolution. However, relative spectral 

response profiles characterizing the filters responsivities of the 

both instruments are not identical between the homologous 

bands, so some differences are probably expected in the 
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recorded land-surface reflectance values. This paper analyses 

and compares the difference between the reflectance of the 

homologous spectral bands in the VNIR and SWIR of MSI and 

OLI sensors for soil salinity dynamic monitoring in arid 

landscapes. In addition, comparisons were carried out in term 

of conversion of these surface reflectance to the SSSI and in 

term of the SEPM for salt-affected soil mapping. To achieve 

these, analyses were performed on simulated data and on two 

pairs of images acquired over the same area in July 2015 and 

August 2017 with one day difference between each pair. For 

simulated data, a field campaign was organized and 160 soil 

samples were collected with various degrees of soil salinity 

classes (i.e., extreme, very high, high, moderate, low, and non-

saline). The bidirectional reflectance factor was measured 

above each soil sample in a Goniometric-Laboratory using an 

ASD spectroradiometer. Then, these measurements were 

resampled and convolved in the solar-reflective bands of SMI 

and OLI using the CAM5S TRC and the relative spectral 

response profiles characterizing the filters of these 

instruments. Furthermore, the used pairs of images were not 

cloudy, or cirrus contaminated, and without shadow effects. 

They were radiometrically and atmospherically corrected, and 

the differences related to BRDF were normalized. To generate 

data for analysis, similarly to OLI, MSI images were 

resampled systematically in 30 m by 30 m pixel size 

considering UTM projection and WGS84 datum. The 

comparisons of the surface reflectance, and derived SSSI and 

SEPM were undertaken in the same way for simulated and 

images data using regression analysis, R2, and RMSD. The 

results obtained demonstrate that the statistical fits between 

SMI and OLI simulated surface reflectance over a wide range 

of soil samples with different salinity degrees reveals an 

excellent linear relationship (R2 of 0.99) for all bands, as well 

as for SSSI and SEPM. The RMSD values are null between the 

NIR and SWIR homologous bands, and are insignificant for 

the other bands (i.e., 0.003 for coastal and 0.001 for the blue, 

green, and red bands). Moreover, the SSSI show an RMSD of 

0.0007 and the SEPM express an excellent RMSD around 0.5 

dS.m-1 (electrical conductivity unit) reflecting a relative error 

that varies between 0.001 and 0.05, respectively, for salinity 

classes varying between 2.5 and 600 dS.m-1. Likewise, the two 

used pairs of images exhibited very significant fits (R2 of 0.93 

for the costal and R2 ≥ 0.96 for the other bands of land surface 

reflectance, and R2 of 0.95 for SSSI and SEPM). Excellent 

consistency was also observed between the derived products 

of the two sensors, yielding a RMSD values less than 0.029 

(reflectance units) for the bands and less than 0.004 for SSSI. 

While, the calculated RMSD for the SEPM fluctuate between 

0.12 and 2.65 dS.m-1, respectively, of non-saline and extreme 

salinity classes, which means that the relative errors varies 

between 0.005 and 0.03 for the considered soil salinity classes 

(i.e., between non-saline to extreme salinity). In general, 

independently to the used data (simulated or images) the 

statistical fits found to be highly significant (0.95 ≤ R2) and the 

reached RMSD values ( 0.029) where smaller than the 

accuracy of radiometric calibration process (0.03) as 

demonstrated by Markham et al. [7]. Moreover, despite the 

small differences especially in coastal and blue bands, the 

results of this research pointed out that MSI and OLI sensors 

can be combined for high temporal frequency to monitor soil 

salinity dynamic in time and space in an arid landscape. 

However, rigorous preprocessing issues such as sensors 

calibration, atmospheric corrections, and BRDF normalisation 

must be addressed before the joint use of acquired data with 

these two sensors.  
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Fig 1. Flowchart of the methodology. 
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Fig 2. Study site (Kingdom of Bahrain). 

 

 

 
Fig 3. Photos of the six considered soil salinity classes (C1 to C6).  
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Fig 4. Spectral signatures of 160 soil samples with different degrees of salinity. 
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(a) 

 

(b) 
Fig 5. Sentinel-MSI and Landsat-OLI relative spectral response profiles characterizing the filters of each spectral band in the 

VNIR (a), and the SWIR (b). 
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Fig 6.  True color composite of raw OLI and MSI images data acquired over Kingdom of Bahrain in July 2015 (left) and August 

2017 (right).  
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Fig 7. Compared surface reflectance simulated and convolved in Sentinel-MSI and Landsat-OLI homologous spectral bands. 
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Fig 8. Compared SSSI (left) and SEPM (right) derived from Sentinel-MSI and Landsat-OLI simulated data. 
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Fig 9. Compared surface reflectance acquired with Sentinel-MSI and Landsat-OLI spectral bands (VNIR and SWIR) acquired in 

August 2017. 
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Fig 10. Compared SSSI (a) and SEPM (b) derived from Sentinel-MSI and Landsat-OLI images data acquired in August 2017. 

 

 

 

 

TABLE I. The Sentinel-MSI and Landsat-OLI effective bandwidths and characteristics ( wavelength, SNR = signal to noise 

ratio). 

Spectral 

Bands 

Sentinel-MSI Landsat-OLI 

λ 

Centre 

(nm) 

∆λ 

(nm) 

Pixel 

Size 

(m) 

SNR 
L ref () 

(w/m2/Sr/m) 

λ 

Centre 

(nm) 

∆λ 

(nm) 

Pixel 

Size 

(m) 

SNR 
E

0
() 

(w/m2/m) 

Coastal 443 20 60 129 129 443 16 30 130 1895.6 

Blue 490 65 10 154 128 482 60 30 130 2004.6 

Green 560 35 10 168 128 561 57 30 100 1820.7 

Red 655 30 10 142 108 655 38 30 90 1549.4 

NIR-1 865 20 20 72 52.5 865 28 30 90 951.2 

SWIR-1 1609 85 20 100 4 1609 85 30 100 247.6 

SWIR-2 2201 187 20 100 1.5 2201 187 30 100 85.5 

 

 

 

TABLE II. Input parameters for the CAM5S RTC (ASL: above sea level; GMT: Greenwich Mean Time; ppm: parts per million). 

Parameters MSI Images OLI Images 

Terrain elevation (ASL) 0.755 km 

Sensor elevation 786 km 705 km 

Date of over-flight 30 July 2015 29 July 2015 

Time of over-flight (GMT) 10:22:47 10:04:19 

Solar zenith angle (deg.) 20.201 23.811 

Solar azimuth angle (deg.) 106.636 102.523 

Date of over-flight 18 August 2017 19 August 2017 

Time of over-flight (GMT) 10:20:33 10:04:46 

Solar zenith angle (deg.) 22.516 26.010 

Solar azimuth angle (deg.) 120.673 116.252 

Atmospheric model Mid-latitude Summer 

Aerosol model Continental 

Horizontal visibility 50 km 50 km 

Ozone content 0.319 cm-atm 

Water vapour 2.93 g/cm2 

CO2 mixing ratio 357.5 ppm (as per model) 
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TABLE III. Laboratory determination of pH, EC-Lab and ions content in the different soil salinity classes. 

Salinity 

class 

EC-Lab 

(dS.m-1) 
pH 

Ca2+ K+ Mg2+ Na+ Cl- SO4
2- SAR 

(mmoles/L)
0.5

 (mg.l-1) 

Extreme 507.0 7.6 1276 843 672.0 154700 170715 11275 874.0 

V. high 170.0 7.2 1878 1454 2874.0 76373 100281 28020 258.9 

High 67.0 7.5 1905 651 1581.0 24171 48546 5488 99.2 

Moderate 7.4 8.6 531 67 181.0 1324 2480 881 12.7 

Low 4.4 8.2 284 44 96.0 782 1329 754 10.3 

Non-saline 2.6 7.9 154 28 58.4 530 886 63 9.2 

 

 

 

TABLE IV. Regression fit equations between MSI and OLI simulated surface reflectance in the homologous spectral bands, and 

the derived RMSD for SSSI and SEPM 

Spectral 

Bands 

Regressions between simulated data in OLI and MSI bands 

Regression coefficients R2 RMSD 

Coastal OLI = 1.0346 MSI + 0.0075 0.99 0.003 

Blue OLI = 0.9875 MSI - 0.0048 0.99 0.001 

Green OLI = 0.9979 MSI + 0.0003 1.00 0.001 

Red OLI = 1.0050 MSI - 0.0053 1.00 0.001 

NIR-2 OLI = 1.0001 MSI - 0.0002 1.00 0.000 

SWIR-1 OLI = 0.9992 MSI + 0.0007 1.00 0.000 

SWIR-2 OLI = 0.9976 MSI - 0.0017 1.00 0.000 

SSSI OLI = 1.0139 MSI - 0.0027 1.00 0.0007 

SEPM OLI = 0.9948 MSI - 0.9648 1.00 0.003 to 0.553* 

* dS.m-1 for electrical conductivity unite; 0.003 dS.m-1 for non-saline and 0.553 for extreme salinity classes. 

 

 

 

TABLE V. Regression fit equations between MSI and OLI image surface reflectance in the homologous spectral bands, and the 

derived RMSE for SSSI and SEPM 

 Regressions between OLI and MSI for 2015 Regressions between OLI and MSI for 2017 

Equations R2 RMSD Equations R2 RMSD 

Coastal OLI = 0.8097 MSI + 0.009 0.94 0.026 OLI = 1.1000 MSI + 0.050 0.93 0.029 

Blue OLI = 1.1000 MSI + 0.048 0.96 0.021 OLI = 1.0800 MSI + 0.040 0.96 0.021 

Green OLI = 0.9241 MSI + 0.008 0.96 0.015 OLI = 1.0400 MSI + 0.020 0.97 0.015 

Red OLI = 0.9643 MSI + 0.004 0.98 0.015 OLI = 0.9900 MSI + 0.010 0.98 0.011 

NIR OLI = 1.0197 MSI + 0.019 0.99 0.010 OLI = 1.0500 MSI + 0.020 0.98 0.009 

SWIR-1 OLI = 0.9800 MSI + 0.000 0.99 0.010 OLI = 1.0300 MSI + 0.010 0.99 0.008 

SWIR-2 OLI = 1.0000  MSI + 0.000 0.99 0.007 OLI = 1.0500 MSI + 0.020 0.99 0.008 

SSSI OLI = 0.9839 MSI + 0.003 0.97 0.006 OLI = 0.9700 MSI + 0.000 0.94 0.004 

SEPM * OLI = 0.9352 MSI + 0.912 0.96 0.12 to 

1.98 * 

OLI = 0.9700 MSI + 1.460 0.95 0.12 to 

2.65 * 

* dS.m-1 for electrical conductivity unite; 0.12 dS.m-1 for non-saline and 2.65 for extreme salinity classes 

 

 

 

 

 

 

 


