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Abstract

Soil salinity imposes an agricultural and economic burden that may be alleviated by identify-

ing the components of salinity tolerance in barley, a major crop and the most salt tolerant

cereal. To improve our understanding of these components, we evaluated a diversity panel

of 377 two-row spring barley cultivars during both the vegetative, in a controlled environ-

ment, and the reproductive stages, in the field. In the controlled environment, a high-

throughput phenotyping platform was used to assess the growth-related traits under both

control and saline conditions. In the field, the agronomic traits were measured from plots irri-

gated with either fresh or saline water. Association mapping for the different components of

salinity tolerance enabled us to detect previously known associations, such as HvHKT1;5.

Using an “interaction model”, which took into account the interaction between treatment

(control and salt) and genetic markers, we identified several loci associated with yield com-

ponents related to salinity tolerance. We also observed that the two developmental stages

did not share genetic regions associated with the components of salinity tolerance, suggest-

ing that different mechanisms play distinct roles throughout the barley life cycle. Our associ-

ation analysis revealed that genetically defined regions containing known flowering genes

(Vrn-H3, Vrn-H1, and HvNAM-1) were responsive to salt stress. We identified a salt-respon-

sive locus (7H, 128.35 cM) that was associated with grain number per ear, and suggest a

gene encoding a vacuolar H+-translocating pyrophosphatase, HVP1, as a candidate. We

also found a new QTL on chromosome 3H (139.22 cM), which was significant for ear num-

ber per plant, and a locus on chromosome 2H (141.87 cM), previously identified using a

nested association mapping population, which associated with a yield component and inter-

acted with salinity stress. Our study is the first to evaluate a barley diversity panel for salinity

stress under both controlled and field conditions, allowing us to identify contributions from
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new components of salinity tolerance which could be used for marker-assisted selection

when breeding for marginal and saline regions.

Introduction

Soil salinization is a limiting factor in crop production that affects at least 20% of irrigated

lands, a number which is bound to increase due to poor irrigation practices and intrusions of

groundwater caused by rising sea levels [1, 2]. While many crops grow or yield poorly in saline

soils, barley (Hordeum vulgare L.) has been deemed the most salt-tolerant cereal crop [3]. Due

to its resilience and relatively stable yields, barley is cultivated in both highly productive areas

and subsistence low-input agricultural systems [4]. In 2016–2017, an estimated 150 million

tons were produced globally for animal feed, human food, and as a raw material for the malt

industry [5]. Since barley adapts well to stressed environments, it has been the target of a vast

number of studies to predict the responses of crops to climate change, especially in terms of

feeding an ever-increasing population and facing freshwater shortages [6], and to understand

the mechanisms underlying its response to soil salinity.

Munns et al. [3] proposed three main mechanisms of salinity tolerance: (i) osmotic toler-

ance, i.e., “shoot ion-independent tolerance”, (ii) ion exclusion from the shoot, and (iii) tissue

tolerance [7]. To determine the genetic basis for barley’s salinity tolerance, several forward

genetics studies have explored the impact of salinity on these three mechanisms. The first of

these, shoot ion-independent tolerance takes place in the early stage of the salt stress before

sodium ions had the time to accumulate. During this rapid response of the plant to stress,

growth is reduced [3]. The shoot ion-independent mechanism of tolerance is the least studied,

because of the difficulties in phenotyping, but signaling type genes are thought to play a major

role [8, 9]. A locus that contributes to shoot Na+ concentration, HvNax4, was mapped in a

doubled-haploid population on chromosome 1HL [10]. Fine mapping of theHvNax4 locus

proposedHvCBL4, the homolog of the Arabidopsis salt-overly sensitive 3 (SOS3), as a candi-

date gene [11].

In terms of the ionic component of salinity tolerance, Hazzouri et al. [12] performed an

association mapping study, where a USDA mini-core barley collection was screened for salin-

ity tolerance under field conditions. A locus associated with leaf sodium content was identified

on chromosome 4HL; the suggested candidate gene wasHKT1;5, a high-affinity potassium

transporter [12–14]. The increased salinity tolerance may be achieved byHKT1;5 retrieving

Na+ from the xylem sap at the root level, which would prevent Na+ from accumulating in the

shoot [12, 15–17]. Other association studies using diversity panels have also been used to assess

salinity tolerance in terms of biomass production, shoot and root ion contents, survival scores,

and leaf chlorosis [18, 19].

Tissue tolerance, an important component of salinity tolerance [3, 20], is related to barley’s

ability to maintain photosynthetic activity and other vital functions in the presence of high lev-

els of Na+ in the shoot. This could be achieved by sequestering excess Na+ into the vacuole,

and a vacuolar H+-inorganic pyrophosphatase (V-PPase) has been identified that could pro-

vide the required energy [21]. Indeed, a locus on chromosome 7HS calledHvNax3 explained

up to 25% of the leaf sodium content in a bi-parental mapping population [22]; the suggested

candidate gene underlying this locus wasHVP10, a vacuolar H+-translocating pyrophospha-

tase [23].

In addition to the three components advocated by Munns et al. [3], other physiological

components have been hypothesized to play a role in salinity tolerance. For instance, Al-
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Tamimi et al. [24] identified a locus in rice responsible for maintaining transpiration efficiency

under salinity stress. A comprehensive framework of the genetics of salinity tolerance is

described in Morton et al. [25].

In this work, we present an association mapping approach to identify loci that control com-

ponents of salinity tolerance, with particular emphasis on identifying QTL for the difficult-to-

study shoot ion-independent mechanism. A diversity panel comprised of 377 two-row spring

barley accessions originating from Europe was phenotyped at The Plant Accelerator1 (TPA)

(Adelaide, Australia), and at the International Center for Biosaline Agriculture (ICBA; Dubai,

UAE). To target shoot ion-independent tolerance, we used non-destructive high-throughput

imaging during the vegetative stage and investigated the effects of salinity on growth rate. To

study yield-related traits, we conducted two consecutive years of field trials at ICBA, irrigating

plots with either non-saline or saline water. The location of the ICBA field trial was ideal for

studying salinity tolerance during the reproductive stage because of its sandy soil and very low

precipitation. The association panel was genotyped with the 9K iSelect SNP set [26] and QTL

associated with salinity tolerance were identified using “classical” and “interaction” [24] mixed

linear models (MLM).

Materials and methods

We would like to state that the field trials described in this section were conducted at the Inter-

national Center for Biosaline Agriculture (ICBA in Dubai, United Arab Emirates) under their

permission.

Plant material

A diversity panel of 377 two-row spring barley accessions originating from Europe was evalu-

ated for salinity tolerance. A list summarizing all the accessions used in this study, country of

origin, and year of release is available in S1 Table. Parts of the diversity panel have been

described in other studies [26–30].

Genotyping of the diversity panel

Genotyping of the 377 accessions was performed using the Illumina Infinium iSelect HD 9k

chip, as described in Comadran et al. [26]. From the original set of 7,864 high-confidence,

gene-based single nucleotide polymorphisms (SNPs), a total of 5,062 informative SNPs (poly-

morphic, minor allele frequency� 5%, no heterozygosity, < 20% missing) were kept for popu-

lation structure analysis in STRUCTURE. Duplicated SNPs were deleted to reduce the

computational time, resulting in 4,226 unique SNPs for the association analyses. Imputation of

the genotypic data was performed using the link.im function in the linkim package in R [31].

Estimating the population structure

To investigate possible population stratifications, we analyzed the SNP data (5,062 SNPs) from

the 377 accessions using the STRUCTURE software, which uses a Bayesian clustering

approach to assign individuals to K subpopulations [32]. Ten independent runs were per-

formed, with K = 1 to 6, 50,000 burn-in periods, and 10,000 Markov Chain Monte Carlo itera-

tions for each value of K. We assumed that each individual belonged to only one population

and used the default admixture model for the ancestry of individuals and the correlated allele

frequencies. In order to choose the best K, the results were analyzed using the ΔKmethod [33],

implemented in the STRUCTURE HARVESTER software [34]. The clusters were permuted

and aligned across runs using CLUMPP [35]. Finally, the DISTRUCT software was used to
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visualize the structure of the population by plotting the Q matrix [36], in which the accessions

were sorted by their year of release (S1 Fig). The population structure was accounted for in the

association models.

Phenotyping at The Plant Accelerator1

Experimental setup and salt application. The barley diversity panel was evaluated during

the vegetative stage using continuous, non-destructive high-throughput phenotyping at TPA

(Adelaide, Australia; −34.97113, 138.63989). The phenotyping experiment was conducted

under controlled conditions between March 21, 2014, and April 23, 2014, in the northeast

(NE) and northwest (NW) Smarthouses. Temperatures in these Smarthouses ranged between

24˚C during the day and 18˚C at night, with an average relative humidity of 73%. Four seeds

per accession were sown 2 cm deep in a 2.5 L free-draining white pot. The soil mix consisted

of 50% (v/v) University of California (UC) mix, 35% (v/v) cocopeat mix, and 15% (v/v) clay/

loam from Angle Vale (South Australia). At the two-leaf stage, the seedlings were thinned

down to one plant per pot and evaluated for uniform size and developmental stage. White

gravel (particle size 2–5 mm) was added to reduce water evaporation from the soil surface. A

blue frame was set in the pot to provide support to the plants. At the emergence of the third

leaf (13 days after sowing), the pots were placed in deep saucers and loaded onto conveyor sys-

tems. Imaging of the plants and watering up to 17% (w/w) gravimetric water content were per-

formed daily by the Scanalyzer 3D system (LemnaTec GmbH, Aachen, Germany). At the

emergence of the fourth leaf (17, 20, or 21 days after sowing due to variations in plant growth),

the third leaf was marked and a salt treatment was applied (200 mL of 350 mM NaCl) to reach

a concentration of 200 mM NaCl in the soil solution once the water content dried back down

to 17% (w/w). Control plants were given an equal volume (200 mL) of water at the time of

treatment. Then, the plants were imaged for 11 days after the salt treatment application. To

evaluate the sodium and potassium contents in the shoot, the fourth fully expanded leaf of

each plant growing under saline conditions was collected. This ensured that the collected leaf

had been exposed to the same period of stress despite variations in plant growth across acces-

sions. The leaves were dried overnight in an oven at 70˚C and the dry mass was recorded. The

dried samples were digested in 10 mL of 1% (v/v) nitric acid for 4 hours at 80˚C and diluted

with milliQ water to a dilution factor of 1:20. The sodium and potassium contents per dry

mass were analyzed using a flame photometer (Model 420 flame photometer from Sherwood,

UK).

Experimental design. The phenotyping experiment was performed in the NE and NW

Smarthouses, which each consisted of 24 lanes with 22 positions. In each position, there was a

cart (a pot) containing a single plant. Because sets of four lanes were found to be homogeneous

in terms of plant growth variability, each set of four lanes was grouped into one zone, resulting

in six zones per Smarthouse [37]. We used a split-plot design (S2 Fig) to allocate the accessions

and conditions, where a main plot corresponded to a pair of consecutive positions, and each

position was a subplot that contained one control (no salt) and one salt-treated plant with the

same barley accession. The use of the split-plot design minimized the effect of spatial variations

between treatments because both the control and the treated plant from the same accession

were located next to each other. Accessions were partially replicated (30%) to estimate spatial

variation within a Smarthouse from the differences between main plots with replicated lines.

The accessions were allocated to main plots using a “nearly-trend-free” block design, where

each block corresponded to one of the six zones (S2 Fig). Salt and control conditions were ran-

domized between the two subplots within each main plot. We used DiGGer [38], a package for

the R statistical computing environment [39], to create the main-plot design, as it initially
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randomizes the allocation of accessions among the main plots. DiGGer then iteratively rear-

ranges allocation, taking into account sources of variation, so that the resulting distribution of

the replicated accessions is not totally random.

Daily imaging of the plants. Daily imaging of the plants using the LemnaTec Scanalyzer

3D (LemnaTec GmbH, Aachen, Germany) started at 13 days after sowing at TPA. Two red-

green-blue (RGB) images were captured from the side at a 90˚ rotation from each other (side

view 1 and side view 2) and one RGB image was captured from above (top view). LemnaGrid

software (LemnaTec GmbH, Aachen, Germany) was used to perform foreground-background

separation and to remove noise from the images. Pixels identified as belonging to the plant in

each of the three images were counted, and the sum of the three (side view 1 + side view 2

+ top view) was used to calculate the projected shoot area (PSA). PSA was previously shown to

linearly correlate with plant biomass at this growth stage in barley [40].

The PSA was processed using the smoothing and extraction of traits (SET) method

described by Brien et al. [41] using imageData [42], a package for the R statistical computing

environment [39]. The absolute growth rate (AGR) and relative growth rate (RGR) were calcu-

lated by taking the difference between the consecutive PSA and ln(PSA) values, respectively,

and dividing this number by the time difference. After calculating PSA, RGR, and AGR, those

plants which did not grow, were very slow-growing, had abnormal growth curves, whose con-

trol outperformed the salt-treated counterpart, or which flowered at that time of the experi-

ment were excluded from subsequent analyses. After removing these plants, the PSA, RGR,

and AGR values were smoothed by fitting cubic smoothing splines for each plant. After exam-

ining the plots of time-course data at TPA, we decided to investigate growth for three time-

intervals: 1–4, 4–8, and 8–11 days after salt treatment (Fig 1).

The complete RGB dataset is publicly available through Zegami at TPA (https://zegami.

plantphenomics.org.au/)

Spatial correction of phenotypic data. To generate phenotypic means adjusted for the

spatial variation in the Smarthouses, a mixed-model analysis was performed for each trait

using ASReml-R [43] and asremlPlus [44], packages for the R statistical computing environ-

ment [39] as described in Al-Tamimi et al. [24].

Fig 1. Plots of smoothed absolute growth rate and relative growth rates. Plots of absolute growth rate (AGR, right

panels) and relative growth rate (RGR, left panels) smoothed by cubic splines for Northwest (NW, top panels) and

Northeast (NE, bottom panels) Smarthouses. Different colors refer to different starting days of the salt treatment.

Based on these plots, we decided to split the period of the experiment into the intervals: 1–4, 4–8, and 8–11 days after

salt treatment. DAP refers to days after planting.

https://doi.org/10.1371/journal.pone.0236037.g001
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In brief, the formula of the maximal mixed model for this analysis is:

y ¼ Xβþ Zuþ e;

where y is the vector of values of the trait analyzed and β, u and e are the vectors for the fixed,

random, and residual effects, respectively. The design matrices corresponding to β and u are

denoted by X and Z, respectively. The smarthouse, zone, position, treatment, and genotype

effects were all accounted for in the model as described in detail in Al-Tamimi et al. [24].

From these analyses, the best linear unbiased estimates were obtained and used as an input for

the subsequent association analysis. The heritability was calculated according to Cullis et al.
[45].

Phenotyping at the field site

A total of 377 European barley accessions, along with three salt-tolerant check lines (116/2A,

58/1A, CM72), were grown at ICBA in Dubai, United Arab Emirates (N 25˚ 05.847; E 055˚

23.464), over the course of two years (2013/2014 and 2014/2015). The plots were irrigated with

either non-saline (1dS/m, referred to as the control condition) or saline (17dS/m, referred to

as the saline condition) water. A full description of the soil characteristics, fertilization and irri-

gation practices, and field design was detailed in Saade et al. [46]. The following agronomic

traits were recorded under both the control and saline conditions: flowering time (HEA),

maturity time (MAT), ripening period (RIP), plant height (HEI), ear number per plant (EAR),

grain number per ear (GPE), dry mass per m2 (DRY_WT), grain mass per m2 (or yield, YLD),

and harvest index (HI).

The phenotypic data was corrected for spatial variation using a multi-environment trial

(MET) analysis in which four year-by-condition combinations were considered separate trials

[47]. We examined variograms, following Gilmour et al. [48], to identify the environmental

terms that were sources of variation and which needed to be added to the MET analysis model.

The models were fitted in ASReml v3.0–1 [43] for R v3.2.0 [49]. The predicted means for the

traits of each accession were corrected for spatial variation (S2 Table) and used as input for fur-

ther phenotypic and association mapping analyses. The significance of the differences between

the means of the two conditions was tested using analysis of variance (ANOVA), and the cor-

relation among traits was performed using the Pearson correlation. Full details about the spa-

tial correction of the field data can be found in Saade et al. [46].

Association model analysis

To identify the loci associated with salinity tolerance, we performed an association mapping

analysis on all 377 barley accessions, using predicted means adjusted for year and condition.

We used the “classical method”, an MLM in which we accounted for population structure and

kinship among accessions. The principal component analysis (PCA.total = 3) and the kinship

(kinship.algorithm = “EMMA”) matrix were generated using the Genome Association and

Prediction Integrated Tool package (GAPIT) [50]. The classical model (using GAPIT) was

only used to examine the sodium and potassium leaf contents because the flame photometer

data was only collected from plants under saline conditions.

We also used the “interaction method” that was described by Al-Tamimi et al. [24]. This

MLM allowed us to examine the interaction between the SNP markers and the treatment,

enabling the detection of genetic regions associated solely with the treatment. We included

three principal components for population structure and relatedness between the individual

(kinship) matrices, which were generated using GAPIT [50], as fixed effects in the model. The

kinship was included as a random effect. We fitted the model in ASReml [43], a package for
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the R computing environment [39]. For the field data, we also added the year of the experi-

ment in the interaction term of the model as the experiments were carried out over two years.

To determine the significance of associations between the SNP markers and a given trait,

we used the Bonferroni-adjusted threshold of α = 0.05. Results from the interaction-model

association analyses are included in S3 Table. To facilitate discussion of the results, we report

the position of the most significant SNP marker for each locus. Manhattan plots were gener-

ated using the R package qqman [51] (S3 Fig). To estimate the linkage disequilibrium between

two SNPs on the same chromosome, we used the software PLINK [52] (http://zzz.bwh.

harvard.edu/plink) to calculate the squared correlation (r2) based on genotypic allele counts.

S4 Table contains the SNPs with r2>0.8 per chromosome.

Results and discussion

In this work, we evaluated a collection of 377 two-row spring barley genotypes for salinity tol-

erance using high-throughput phenotyping at the vegetative stage and field trials at the repro-

ductive stage. Previous works have combined high-throughput controlled and field

phenotyping to identify genetic loci associated with stresses, other than salinity, in other plant

species [53, 54]. However, to the best of our knowledge, this is the first association study that

combines the two experimental settings to elucidate the genetic components of barley salinity

tolerance.

The salt levels applied in the two experimental setups (200mM at TPA and 17dS/m ICBA;

which are roughly equivalent) were considered appropriate for our studies because they signif-

icantly affected all studied traits without causing major premature plant senescence. At TPA,

we observed a clear reduction in biomass production under salinity stress. The average values

of the absolute and relative growth rate intervals (AGR and RGR respectively) were signifi-

cantly reduced under saline conditions in comparison with control conditions (Fig 2). For

instance, the average RGR was reduced by 40% after 8–11 days under saline conditions com-

pared to controls (Fig 2).

Similarly, the means of all agronomic traits measured in the field were significantly reduced

under saline conditions compared with the controls (Table 1). For example, yield was reduced

by 44.3%. We observed that the correlation between traits measured in the field varies, to some

extent, according to treatment (S4 Fig). In our previous study, where a NAM population of

barley was grown under same field conditions, we observed that a correlation between matu-

rity time and ripening period became weaker under saline conditions [46]. Here, we found

that maturity time and ripening period had a correlation of -0.48 under control conditions,

but were not correlated under saline conditions. Similarly, harvest index and ripening period

were correlated under control (0.36) but the correlation is not significant under saline

Fig 2. The effect of salt treatment on the traits measured at The Plant Accelerator1. Effect of salt on average

absolute growth rate (AGR, left panel) and relative growth rate (RGR, right panel) for the three intervals 1–4, 4–8, and

8–11 days after salt treatment. Red and blue represent control and salt conditions, respectively. Error bars

are ± standard error.

https://doi.org/10.1371/journal.pone.0236037.g002
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conditions. These results are similar to those reported in wheat grown in Indian fields, where

variation was observed in the strength and significance of correlations among traits depending

on the growing conditions (normal, saline, or sodic) [55].

A locus is associated with a growth-related trait under controlled

conditions independent of salt treatment

We used association mapping to identify genetic loci associated with the growth responses of

barley to salinity stress during the vegetative stage. We applied the classical method using

GAPIT [50] and the interaction method developed in Al-Tamimi et al. [24]. Using the classical

model, we observed a significant association on chromosome 4H (112.65, 114.45 cM) for

sodium and potassium contents (ionic phase) as measured by flame photometry in leaf sam-

ples collected from plants under saline conditions (S5 Table). The same locus was detected by

Hazzouri et al. [12] and more recently by Houston et al. [13], the latter identifying HKT1;5 as

the gene underlying the association. This observation verifies that the genetic material and

stress level applied at TPA were appropriate for the purpose of the experiment.

To identify loci related to stress tolerance and performance, the classical model was used on

stress-tolerance indices derived for AGR and RGR from the three time-intervals (1–4, 4–8,

and 8–11 days after salt treatment) in TPA. The classical model did not reveal any significant

associations in this case and we could only find a weak, non-significant peak on chromosome

7H (44.35 cM) for RGR one to four days after the salt treatment (i.e., RGR1to4) using the stress

tolerance index STI (as defined by Fernandez [56]) (S5 Fig). With the interaction model, we

Table 1. Effect of the salt treatment on agronomic traits measured in the field.

Trait a) Condition Mean SE b) CV (%) c)

HEA (d) Control 85.1 0.267 8.61

Salt 82 0.241 8.06

MAT (d) Control 113 0.184 4.45

Salt 108 0.209 5.31

RIP (d) Control 28.3 0.124 12

Salt 26.2 0.107 11.20

HEI (cm) Control 67.3 0.383 15.6

Salt 57.6 0.258 12.3

EAR Control 4.34 0.0363 23.0

Salt 2.68 0.0222 22.7

GPE Control 14.6 0.102 19.1

Salt 10.6 0.0802 20.7

DRY_WT (g/m2) Control 465 2.4 14.2

Salt 375 2.36 17.3

YLD (g/m2) Control 155 1.4 24.7

Salt 86.3 1.09 34.6

HI Control 0.332 0.00215 17.8

Salt 0.229 0.00233 28

Descriptive statistics (mean, standard error of the mean, and coefficient of variation) for the agronomic traits measured in the field under control and salt conditions.

a) Flowering time (HEA), maturity time (MAT), ripening period (RIP), plant height (HEI), ear number per plant (EAR), grain number per ear (GPE), dry mass per m2

(DRY_WT), yield (YLD), and harvest index (HI)

b) SE refers to standard error of the mean

c) CV (%) refers to the percentage of the coefficient of variation (ratio of the standard deviation to the mean)

https://doi.org/10.1371/journal.pone.0236037.t001
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detected the same locus on chromosome 7H (44.35 cM) associated with RGR1to4 independent

of the treatment (S5 Fig). This locus was significantly associated with flowering time and plant

height in a different barley population, grown under control conditions [57]. In this case, the

interaction model detected QTL in the TPA better than the classical model, highlighting the

importance of testing whether the markers underlying QTL associations significantly interact

with treatment. Similarly, the interaction model detected QTL with much lower p-values than

the classical method in a rice diversity panel tested for mild salinity stress [58]. Hence our

results reinforce the need to employ the new models introduced in Al-Tamimi et al. [24] that

include interactions in the association model rather than simply splitting the analysis between

control and salt groups. No other significant peaks were identified, using either the classical

model or the interaction model, for any of the other growth-related traits measured at TPA.

Flowering loci and loci associated with yield components are responsive to

salinity treatment under field conditions

In the association analyses of the field traits, loci with known underlying vernalization and

flowering genes were significant under the marker and marker-by-treatment terms of the

interaction model. A locus on chromosome 6H (51.93 cM) co-locating with HvNAM-1 [59,

60] was significant under the marker-by-treatment term and associated with ripening period,

plant height and ear number per plant (Fig 3). In addition, the 7H (28.46 cM) locus known to

contain Vrn-H3 (HvFT1) [61] was associated with flowering time, maturity time, and harvest

index independent of the treatment. In contrast, the association of this locus with yield and

ripening period was treatment-specific (Fig 3). In our diversity panel, the 5H (122.3 cM) locus

containing Vrn-H1 [62] affected ear number per plant depending upon whether the plant was

grown under saline or control conditions.

The role of vernalization genes in barley response to salinity is debatable and is, we believe,

either environmentally dependent or indirect. Zhou et al. [63] did not identify co-location

among QTL underlying the vernalization genes (Vrn-H1 and Vrn-H3) and those associated

with salinity tolerance in a doubled-haploid barley population. However, a locus where Vrn-H1
was associated with salinity tolerance under drained and waterlogged conditions was observed

in another doubled haploid barley population [64]. In both studies [63, 64], salinity tolerance

was assessed as a combination of leaf chlorosis and plant survival scores, and the plants were

grown under glasshouse conditions. Results presented here suggest that the nature of the popu-

lation and the method of stress evaluation might affect the apparent involvement of vernaliza-

tion genes in salinity tolerance. The association mapping analyses presented here validate the

results of our previous study that used a different barley population, and suggest that vernaliza-

tion genes do play a role in the salinity stress response of barley under our field conditions [46].

We detected three other loci (2H, 141.87 cM; 3H, 139.22 cM; 7H, 128.35 cM) associated

with yield components and response to salinity stress (Fig 3). The 2H (141.87 cM) locus was

previously detected in a NAM wild barley population (2H, 140–145 cM) [46]. In the NAM

population it was significant under saline conditions and was associated with yield [46]. Alpha
glucosidase, calreticulin 1 and 2, and choline-transporter-like genes were suggested as potential

candidates underlying this locus [46]. We detected the same locus (2H, 141.87 cM) but specifi-

cally associated with ear number per plant in response to salinity treatment. The identification

of the same locus associated with yield and a yield-related trait in response to salt treatment in

two distinct populations emphasizes its importance and justifies further investment in strate-

gies to validate the causal gene.

We identified a QTL on chromosome 3H (139.22 cM) that was associated with ear number

per plant in response to salinity treatment. To the best of our knowledge this QTL (139.22 cM)
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has not previously been reported in either barley developmental or stress tolerance association

studies. To explore the candidate genes underlying this QTL, we used the BARLEYMAP pipe-

line [65] with the updated Morex genome annotation [66], and searched for candidate genes

within 2cM of the most significant marker (SCRI_RS_165044). We found that the candidate

genes underlying the locus, a potassium transporter family protein (HORVU3Hr1G104870)

and a glucan endo-1,3-beta-glucosidase (HORVU3Hr1G105190), were annotated as high-con-

fidence genes within this genetic region. Both candidate genes were previously reported to be

Fig 3. A) Manhattan plots of the interaction model for ripening period (a, d), ear number per plant (b, e), and grain

number per ear (c, f). The upper and lower panels illustrate the marker and marker-by-treatment terms, respectively.

Loci significant in the marker term contribute to the traits regardless of the treatment, whereas loci significant in the

marker-by-treatment term are responsive to salinity treatment. The red line indicates the Bonferroni corrected p-value

threshold above which SNPs are considered significant (indicated by green dots). B) List of loci discussed in the main

text. These loci are significant under the interaction model for the marker or marker-by-treatment terms. The name,

position, and–log10(p-value) of the most significant markers are mentioned and candidate genes are suggested.

https://doi.org/10.1371/journal.pone.0236037.g003
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involved in salinity responses. The ability to maintain a high cytosolic potassium-to-sodium

ratio under salinity stress was found to be a key mechanism of salinity tolerance; hence the

importance of potassium transporters [67]. In addition, glucan endo-1,3-beta-glucosidase, was

shown to be responsive to salinity stress in different plant species. For example, the glucan

endo-1,3-beta-glucosidase was downregulated by salt stress in the roots of tomato cultivars

(Solanum lycopersicum) [68]. At the protein level, glucan endo-1,3-beta-glucosidase was

induced by salt stress in the roots of upland cotton seedlings (Gossypium hirsutum L.) [69].

The third locus associated with a yield component (grain number per ear) under the

marker-by-treatment term was located on chromosome 7H (128.35 cM). Interestingly, a pyro-

phosphate-energized proton pump (HORVU7Hr1G115540, previously AK360389) was located

at chromosome 7H position 128.68 cM. By blasting (http://webblast.ipk-gatersleben.de/

barley_ibsc/) the sequence ofHVP1mRNA for vacuolar H+-translocating pyrophosphatase

(GenBank: AB032839.1), we achieved the same hit (HORVU7Hr1G115540). Therefore, HVP1
could be the candidate vacuolar H+-translocating pyrophosphatase underlying the 7H locus.

HVP1 was previously mapped on chromosome 7H in a barley bi-parental population resulting

from the Barque x CPI-71284 cross [70]; however, the low mapping resolution resulted in a

large QTL with an imprecise position. The role of the vacuolar pyrophosphatase in salinity tol-

erance was demonstrated in transgenic barley expressing the Arabidopsis vacuolar pyropho-

sphatase AVP1, which showed increased shoot biomass production and yield under saline

field conditions compared with the controls [71]. Therefore,HVP1merits further investigation

as the causal gene underlying the 7H locus.

The means for ear number per plant and grain number per ear are presented in Table 2 for

each condition (control or saline) and genotype (homozygous allele A or homozygous allele B

at the most significant marker) at these three loci (2H, 141.87 cM; 3H, 139.22 cM; and 7H

128.35 cM). The condition, the genotype, and the condition-by-genotype interaction terms

were all significant (two-way analysis of variance, p-value< 0.05), supporting these three loci

as true positives. All three are therefore plausible candidates for new components of salinity

tolerance in barley.

Table 2. Comparison of trait (ear number per plant and grain number per ear) means between accessions by condition (control or saline) and genotype (at peak

markers).

Trait Peak marker Chromosome Position (in cM)a) Condition Genotypeb) Mean Standard error

Ear number per plant SCRI_RS_158072 2H 141.87 Control AA 4.39 0.04

GG 3.83 0.14

Saline AA 2.70 0.02

GG 2.50 0.07

Ear number per plant SCRI_RS_165044 3H 139.22 Control AA 4.31 0.04

CC 4.92 0.17

Saline AA 2.68 0.02

CC 2.80 0.10

Grain number per ear SCRI_RS_177876 7H 128.35 Control AA 14.39 0.12

CC 15.35 0.19

Saline AA 10.48 0.09

CC 11.13 0.15

a) Position of peak marker in the QTL

b) Genotype at the peak marker

https://doi.org/10.1371/journal.pone.0236037.t002

PLOS ONE Genetics of barley salinity tolerance

PLOS ONE | https://doi.org/10.1371/journal.pone.0236037 July 23, 2020 11 / 19

http://webblast.ipk-gatersleben.de/barley_ibsc/
http://webblast.ipk-gatersleben.de/barley_ibsc/
https://doi.org/10.1371/journal.pone.0236037.t002
https://doi.org/10.1371/journal.pone.0236037


Salinity tolerance in barley at the vegetative and reproductive stages seem

to be controlled by distinct mechanisms

In this work, we sought to discover correlations between traits during the vegetative and repro-

ductive stages of barley development. While we could not find a strong correlation between

the traits measured in TPA and in the field, some traits were significantly correlated. For

instance, we observed a correlation (r = 0.3–0.4) between dry mass per m2 under control or

saline conditions in the field, and different AGR intervals (Fig 4). We observed a similar corre-

lation (r = 0.2–0.3) between the grain mass per m2, i.e. yield, and different AGR intervals (Fig

4). This is consistent with observations that accessions that grew rapidly in TPA tended to

have a large biomass and a higher yield in the field. Previous studies comparing data from con-

trolled environment versus field studies have indicated that while certain correlations can be

observed between the two experimental setups, they also report many inconsistencies [71, 72].

Our results, along with these previous observations highlight the need to exercise caution

when attempting to extrapolate results collected in one environment, to another.

We could not identify common QTL between the TPA and field data. There are several pos-

sible reasons for this. Data from the two experimental setups showed only a modest correla-

tion, potentially explaining the absence of common QTL. The barley plants studied in TPA

Fig 4. Correlations among all traits measured under control and saline conditions in this study. The red square

encompasses correlations between the traits measured in the field at ICBA and under controlled conditions at TPA.

The size and the color of the circles refer to the strength and the significance of the correlations, respectively.

Nonsignificant correlations are indicated by blank cells. Flowering time (HEA), maturity time (MAT), ripening period

(RIP), plant height (HEI), ear number per plant (EAR), grain number per ear (GPE), dry mass per m2 (DRY_WT),

yield (YLD), and harvest index (HI) are measured in the field under both control (_C) and saline (_S) conditions at

ICBA. Absolute growth rate (AGR) and relative growth rates (RGR) are measured for the time-intervals 1–4, 4–8, and

8–11 days after salt treatment under both control (_C) and saline (_S) conditions at TPA. Sodium (Na) and potassium

(K) contents were measured by flame photometer from leaves collected from plants grown at TPA under saline

conditions.

https://doi.org/10.1371/journal.pone.0236037.g004
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were based on three-week-old plants, while those measured in the field were from plants in

later developmental stages (mainly reproductive). Mano et al. [73] were unable to find overlap-

ping QTL when studying barley during the germination and seedling stages, arguing that dif-

ferent tolerance mechanisms could be involved in the different stages. QTL that contribute to

a certain trait can have a transient nature and dynamically change with time and developmen-

tal stages [54, 74, 75].

We detected only one significant QTL in TPA experimental setting (for RGR1to4). Two

previous studies evaluated barley for water-deficit tolerance using high-throughput imaging

and were able to detect QTL associated with growth rate [40, 76]. Both of these studies calcu-

lated growth differently from our study, with one fitting the logistic curve to describe plant

growth [40, 76]. Al-Tamimi et al. [24] derived growth-related traits similarly to our study and

identified QTL associated with RGR and AGR; however, the rice plants used were bigger than

our plants (based on image comparison) and the authors used a 700k SNP chip for their analy-

sis. The fact that many loci contributed to growth under saline conditions [24] was attributed

to the complexity of the trait and the involvement of several loci with small effects. In the end,

the paper was focused on QTL associated with transpiration efficiency [24]. Similarly, Peirone

et al. [77] found that transpiration efficiency measured in greenhouse conditions at the early

stages of soybean growth was the most efficient trait in predicting drought tolerance in the

field and Knoch et al. [75] showed that early plant growth of canola was a complex trait that

involves several temporally dynamic loci with medium and small effects. Furthermore, the her-

itabilities of TPA-measured traits were relatively low in our experiments, ranging between 0.5

and 0.6 (S6 Table), and these values were based on spatially adjusted means. Since previous

high-throughput phenotyping experiments showed that the heritability values of growth-

related traits become higher towards maturity [72], we suggest evaluating barley plants in TPA

during a later developmental stage to better identify the growth-related loci that interact with

salinity stress. Moreover, the advent of the barley 50k iSelect SNP chip [78] might improve the

power of QTL detection. Finally, a model that runs the association analysis while including the

spatial design terms in one step, rather than using the estimate of the means, might improve

the association and enable the identification of significant QTL for salinity tolerance at TPA.

In this study, we identified new components of salinity tolerance—maintenance of grain

number per ear and ear number per plant—to be added to the three components of salinity

tolerance in the conventional paradigm of Munns et al. [3]. Furthermore, we provided some

suggestions for improvement of the experiments performed at TPA in order to detect growth-

related QTL associated with salinity tolerance in barley. Finally, we underscored the impor-

tance of validating the 2H (141.87 cM) locus and confirmingHVP1 as the candidate gene

underlying the 7H (128.35 cM) locus.

Supporting information

S1 Fig. Results of STRUCTURE software ran on the 377 barley accessions used in our

study. a) We ran STRUCTURE for K from 1 to 6. Each vertical bar represents an accession.

The labels from closest to furthest from the plot are year of release, country of origin, and

name of the 377 accessions. b) K = 2 was chosen as the best K based on the ΔKmethod [33]

using HARVESTER STRUCTURE software. c) PC1 and PC2 generated by GAPIT are plotted

and colored by the year of release of the accession. The year 1991 was used as the cutoff to sep-

arate “old” from “new” accessions in this graph. At the bottom, the result from the STRUC-

TURE software for K = 2 is shown, ordered by year of the accession’s release.

(TIF)
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S2 Fig. Experimental design at The Plant Accelerator1. In top panels, allocation of repli-

cated (blue), unreplicated (grey) accessions. In bottom panels, allocation of control (blue, 1)

and salt (yellow, 2) conditions. The design is a split-plot design where each pair of carts corre-

sponds to a main plot to which an accession is allocated. The left and right panels correspond

to the design in the Northwest (NW) and Northeast (NE) smarthouses, respectively. Each posi-

tion in a smarthouse corresponds to an individual plant.

(TIF)

S3 Fig. Manhattan plots for the results of the interaction association model. Results for

flowering time (a, d), maturity time (b, e), plant height (c, f), dry mass per m2 (g, j), yield per

m2 (h, k), and harvest index (i, l). Green- and yellow-shaded panels illustrate the marker and

marker-by-treatment models, respectively. Loci significant in the marker term contribute to

the traits regardless of the treatment, whereas loci significant in the marker-by-treatment term

are responsive to salinity treatment. The red line indicates the Bonferroni corrected p-value

threshold above which SNPs are significant (indicated by green dots).

(TIF)

S4 Fig. Correlations between traits in the field under control (left) and salt (right) condi-

tions. The size and the color of the circles refer to the strength and the significance of the cor-

relation, respectively. Non-significant correlations are indicated by blank cells.

(TIF)

S5 Fig. Comparing Manhattan plots of Relative Growth Rate (RGR) for the interval 1–4

days (RGR1to4) after salt treatment measured at The Plant Accelerator1 using different

association models. Manhattan plots of RGR 1to4 for a) control using GAPIT b) salt using

GAPIT c) stress tolerance index STI (as defined in Fernandez [56]) using GAPIT d) marker

term of interaction model e) marker-by-treatment term of interaction model. Loci significant

in the marker term contribute to the traits regardless of the treatment, whereas loci significant

in the marker-by-treatment term are responsive to salinity treatment.

(TIF)

S1 Table. List of the 377 accessions used in this study, their country of origin and their

year of release.

(XLSX)

S2 Table. Spatially corrected phenotypic data and the three principal components used for

association analysis.

(XLSX)

S3 Table. Results of the association analyses using the interaction model of the traits measured

at a) The Plant Accelerator1 and b) in the field.

(XLSX)

S4 Table. LD (r2) between each pair of markers calculated using PLINK and split per chro-

mosome.

(XLSX)

S5 Table. GAPIT results for sodium and potassium content per dry mass of leaf from

plants grown at The Plant Accelerator1 under salt stress.

(XLSX)

S6 Table. Heritability of the traits measured at The Plant Accelerator1.

(XLSX)
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