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Abstract

salinity tolerance at different quantiles.

Background: In plant science, the study of salinity tolerance is crucial to improving plant growth and productivity

under saline conditions. Since quantile regression is a more robust, comprehensive and flexible method of statistical
analysis than the commonly used mean regression methods, we applied a set of quantile analysis methods to barley
field data. We use univariate and bivariate quantile analysis methods to study the effect of plant traits on yield and

Results: We evaluate the performance of barley accessions under fresh and saline water using quantile regression
with covariates such as flowering time, ear number per plant, and grain number per ear. We identify the traits
affecting the accessions with high yields, such as late flowering time has a negative impact on yield. Salinity tolerance
indices evaluate plant performance under saline conditions relative to control conditions, so we identify the traits
affecting the accessions with high values of indices using quantile regression. It was observed that an increase in ear
number per plant and grain number per ear in saline conditions increases the salinity tolerance of plants. In the case
of grain number per ear, the rate of increase being higher for plants with high yield than plants with average yield.
Bivariate quantile analysis methods were used to link the salinity tolerance index with plant traits, and it was observed
that the index remains stable for earlier flowering times but declines as the flowering time decreases.

Conclusions: This analysis has revealed new dimensions of plant responses to salinity that could be relevant to
salinity tolerance. Use of univariate quantile analyses for quantifying yield under both conditions facilitates the
identification of traits affecting salinity tolerance and is more informative than mean regression. The bivariate quantile
analyses allow linking plant traits to salinity tolerance index directly by predicting the joint distribution of yield and it
also allows a nonlinear relationship between the yield and plant traits.

Keywords: Bivariate quantiles, Conditional quantiles, Joint estimation, Plant growth, Stress tolerance, Yields

Background

Soil salinity is a major abiotic stress that negatively
impacts agriculture, as plants grown under saline con-
ditions grow more slowly and have lower yields than
plants grown under non-saline conditions [1]. Therefore,
understanding mechanisms of salinity tolerance in plants
is important to improve plant growth and productivity.
Plants are able to maintain growth in saline conditions
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relative to non-saline conditions using a range of mech-
anisms, where a range of traits can contribute to this
maintenance of growth and yield. Munns and Tester [2]
suggested three main traits contributed to salinity toler-
ance: exclusion of toxic salts from the shoot, tolerance
of toxic salts in the shoot that were not excluded from
the shoot; and tolerance processes that were indepen-
dent of shoot salt effects. These considerations have been
developed further by Morton et al. [3] to include a wider
range of other physiological traits, focusing in particu-
lar on the ability of plants to maintain processes in saline
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conditions relative to non-saline conditions. The techni-
cal approaches that can be taken to measure these traits is
detailed in Negrao et al. [4].

To study salinity tolerance, a typical way is to define
salinity tolerance indices, which measure the plant perfor-
mance in saline conditions relative to non-saline condi-
tions [5—7]. These indices are univariate and result in the
reduction of the dimensions of data. As a consequence,
a single index might not be sufficient to summarize the
relationship between the indices and the covariates. In
this paper, we apply a set of quantile analysis methods
and demonstrate the necessity of these methods by study-
ing the dependence of plant traits on salinity tolerance of
barley accessions. A conventional statistics tool used to
investigate the relationship between a response variable
and covariates is the mean regression [8, 9]. Mean regres-
sion only provides an incomplete picture of the response
distribution corresponding to the covariates, just as the
mean does by providing an incomplete summary of a sin-
gle distribution, and not accounting for extreme values in
the data [10, 11].

Quantiles are the values that divide the entire distri-
bution such that a given proportion of values, say p, lie
below the p" quantile, where p € (0,1) [12]. For exam-
ple, median is the 0.5™ quantile. The data can be divided
into different quantiles, and we can check how the data
is behaving for each quantile. On the other hand, mean
provides a grand summary of the distribution by comput-
ing its average; hence losing information. Mean regression
models the average of the distribution of the response
variable for given covariates, assuming that the variables
behave similarly at the upper and lower tails of the distri-
bution as well as the mean. On the other hand, quantile
regression models the entire distribution of the response,
given the covariates, and provides a more comprehensive
analysis of the effect of the predictors on the response [10,
13]. Quantile regressions are particularly valuable in appli-
cations where extremes are imperative, such as agricul-
tural studies for which higher quantiles of yield are critical
[14]. The regression that involves modeling the condi-
tional mean of the response distribution might obscure
the effect of a trait on the tails of the response, whereas
quantile regression can reveal those effects. For instance,
one particular trait may have a negligible effect on condi-
tional means but may lower conditional 10™ percentiles
sharply [15].

Quantile regression has drawn considerable research
interest in recent years and is being applied in various
fields. Quantile regression is becoming adapted in ecol-
ogy and environmental sciences [16—18]. For instance,
in some ecological applications, the approach of quan-
tile regression was used to estimate the upper quantiles
of the growth rates of marine phytoplanktons as a func-
tion of temperature [19] and to reveal the uncertainty in
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the relationship between an organism and its habitat at
different quantile levels [20]. It has been used in biology
to test the significance of dissolved oxygen concentration
at the upper quantiles of body size of deep-sea organisms
[21, 22]. Quantile regression has long been used in other
disciplines, like business and economic analysis [23-26].
Methods based on quantile regression have been used in
health and medicine and demonstrated how richer infer-
ences could be drawn using quantile regression [27, 28]. In
this paper, we are suggesting to extend the application of
quantile regression techniques to the field of agriculture
and salinity tolerance.

In case of a univariate distribution, the natural ordering
of a variable is the order on real line R. Hence, obtain-
ing quantiles, in that case, is straightforward. However,
for a bivariate distribution, there is no natural ordering of
observations, and thus obtaining bivariate quantiles is sta-
tistically challenging [29-31], since we need to consider
not only values but also directions. Kong and Mizera [32]
proposed directional quantiles and directional quantile
envelopes to characterize multivariate distribution. Using
directional quantile envelopes, we propose here a bivari-
ate quantile regression model to predict the behavior of
the bivariate response variable jointly for given covariates.

To illustrate the methods we used, we perform a salinity
tolerance analysis to evaluate the performance of barley
accessions. We focus on the upper tails of the response
distribution, as the accessions that are highly salt-tolerant
and have a high yield in non-saline conditions are of pri-
mary interest. We perform a quantile regression analysis
using plant agronomic traits, and a salinity tolerance index
to identify the traits that affect the accessions with high
indices. We also propose a flexible approach to identify
accessions with high salinity tolerance along with high
yield using conditional and marginal quantiles. We predict
the bivariate distribution of plant yield under two different
conditions (non-saline and saline), for a given plant trait,
and hence, directly associate salinity tolerance indices
with the plant traits to get a detailed analytic understand-
ing of the effects of plant traits on salinity tolerance. The
dataset presented in this paper is used to provide an exam-
ple of how the quantile analysis methods can be applied to
the field of agriculture and salinity tolerance.

Results

Behaviour of traits in non-saline and saline conditions

In this section, we perform a univariate quantile regres-
sion under both non-saline and saline conditions using a
common model, for different quantile levels, to observe
the behavior of the traits on the complete distribution
of the response yield. The plot of the results of the fit-
ted quantile regression model is shown in Fig. 1. Since
the categorical variable condition was coded as 0 for
saline conditions and 1 for non-saline conditions, the
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Fig. 1 Relationship between plant traits and yield explained through quantile regression modeling: Each panel represents the estimated value of
regression coefficient in black dots and the estimated 95% confidence interval in grey area as a function of quantile level for respective covariate in
the model with yield as response, obtained by fitting a multiple quantile regression model (n=808). The horizontal black lines represent the zero
value of the estimated coefficients. The variable condition is a dummy variable and was coded 1 for non-saline conditions and 0 for saline
conditions. a*b represents the interaction between covariates a and b. a Intercept, b Plant height (cm), € Flowering time (days), d Ripening period
(days), e Ear number per plant, f Grain number per ear, g Condition, h Condition*Plant height (cm), i Condition*Flowering time (days), j
Condition*Ripening period (days), k Condition*Ear number per plant, I Condition*Grain number per ear

individual estimated effects represent the results for saline  all quantile levels since the estimated confidence inter-
conditions, and the interaction terms represent the dif- val does not include the horizontal line for zero value of
ference between the estimated effects of each covariate the estimated coefficent (Fig. 1g), which means that for
for the accessions with non-saline and saline conditions.  an average value of plant traits, the yield in non-saline
We can observe that condition is positively significant for =~ conditions is significantly greater than the yield in saline
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conditions. The change in slope at higher quantiles means
that the difference is higher for accessions with higher
yields.

Besides, the difference in yield under the two condi-
tions can be attributed to the height of accessions, since
the interaction term of plant height is significant at some
quantiles (Fig. 1h). As the plant height increases, the yield
in non-saline conditions decreases, while plant height
does not significantly affect the yield in saline conditions.
Ripening period positively affects yield in saline condi-
tions for low and mid quantiles but negatively affects yield
for higher quantiles (Fig. 1d).

We also found that the flowering time seems to have a
negative impact on yield in saline conditions, for acces-
sions with mid-level and high yield (Fig. 1c). This effect is
more substantial for accessions with a high yield than mid-
level yield which can be seen from the change in slope,
while this observation is not significant for accessions with
a low yield. Based on the differences, the negative effects
of flowering time at mid and high quantiles are similar
in non-saline conditions but has stronger negative effects
on yield at lower quantiles compared to saline conditions
(Fig. 1i). Ear number per plant (Fig. 1le), and grain num-
ber per ear (Fig. 1f) have a significant positive impact on
yield in saline conditions. The impact of grain number per
ear on yield under saline conditions is more substantial for
accessions with high yield. The interaction terms for vari-
ables except for plant height and flowering time, are not
significant, so there is no significant difference in the esti-
mated effects of ripening period (Fig. 1j), ear number per
plant (Fig. 1k), and grain number per ear (Fig. 11) on yield
between non-saline and saline conditions.

The results of a similar framework using mean regres-
sion for the same model is shown in Table 1. From these
results, we can merely comment that, on average, acces-
sions with late flowering time have a lower yield. Quantile
regression reveals that this effect is not significant for
accessions with low yield (lower quantiles). Also, a later
flowering time affects accessions with high yield more
than it does for the accessions with average yield.

Mean regression also shows that, with an increase in
grain number per ear, on average, the yield in saline
conditions increases by 6.7 g/m?. While with quantile
regression, we can observe for accessions with high yield,
the increase is nearly 10 g/m2. Therefore, mean regres-
sion provides limited opportunity for studying the acces-
sions with extreme yields which are of utmost agronomic
importance, while quantile regression allows us to fine-
tune the relationship between a trait and yield at different
quantiles.

Traits affecting salinity tolerance indices
To study the characteristics of a specific set of response
variables that may be important in the context of salinity
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Table 1 Results of mean regression between plant traits and yield

Traits Coefficient value  Standard error  p-value
Intercept 109.9237 35151 2e-16*
Plant height (cm) 0.3526 0.2329 0.130530
Flowering time (days) ~ -1.1282 0.3195 0.000438 *
Ripening period -0.8952 2.5387 0.724464
(days)

Ear number per plant ~ 10.3050 32122 0.001390 *
Grain number perear  6.7732 0.7903 2e-16*
Condition 27.7525 42314 9.77e-11*
Condition x Plant -0.6567 0.2811 0.019716 *
height (cm)

Condition x -0.2733 0.4232 0.518699
Flowering time (days)

Condition x Ripening  1.2312 29102 0672357
period (days)

Condition x Ear -0.5443 36711 0.882178
number per plant

Condition x Grain 0.9860 1.0241 0.335920

number per ear

The three columns represent the estimated coefficient value, standard error and the
p-value for the respective covariate obtained by fitting a multiple mean regression
model with sample size 808. The significant p-values are marked with a ', for a
significance level of 0.05. The variable condition is a dummy variable and was coded
1 for non-saline conditions and 0 for saline conditions. a x b represents the
interaction between a and b

tolerance, we investigate the tail behavior of the response
using quantile regression. One of our goals is to examine
the accessions with a high salinity tolerance index. Several
salinity tolerance indices have been previously proposed
to identify stress tolerant and high-yielding accessions
[5, 6, 33]. Saade et al. (2016) [33] shows how SWP is bet-
ter than other salinity tolerance indices (S/C and STI) in
selecting accessions that are salt tolerant and have high
yield. Using our dataset, we compute SWP using yield
under saline and non-saline conditions for each accession
and conduct a trait analysis to assess the significance of
traits affecting the salinity tolerance. Here, we consider
the effect of the traits under saline conditions on SWP,
which is considered as the response. We perform a quan-
tile regression on SWP using plant traits under saline
conditions as covariates (n= 404); we then check for the
significance of plant traits that affect the salinity tolerance
of plants. The results for the quantile regression model on
SWP are shown in Fig. 2.

We observed that late flowering time has a negative
impact on salinity tolerance, with the accessions with high
SWP being affected the most, and it has no significant
impact on accessions with low SWP (Fig. 2¢). This could
be explained by the fact that plants that flower later are
more exposed to the heat and plants with low SWP are
already struggling with the salt stress. Quantile regres-
sion helped us observed that the ripening period is not
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Fig. 2 Relationship between plant traits in saline conditions and SWP index explained through quantile regression modeling: Each panel represents
the estimated value of regression coefficient in black dots and the estimated 95% confidence interval in grey area as function of quantile level for
each covariate in the model with SWP index as response, obtained by fitting a multiple quantile regression model (n = 404). The horizontal black
lines represent the zero value of the estimated coefficients. a Intercept, b Plant height (cm), € Flowering time (days), d Ripening period (days), e Ear

significant for accessions with median SWP, but it is neg-
atively significant for accessions with high SWP (Fig. 2d).
It was also observed that ear number per plant (Fig. 2e)
and grain number per ear (Fig. 2f) have a significant pos-
itive impact on salinity tolerance index SWP. The effect
of grain number per ear is more substantial for accessions
with high SWP than with median SWP.

Since SWP is used to differentiate the top-performing
accessions from the other accessions based on the order
of their values, accessions with high values of the index
are of more practical importance. Using the quantile anal-
yses, we study the effects of plant traits on accessions
with high salinity tolerance, whereas, from the results of
mean regression, we can only comment on accessions with
average salinity tolerance, and therefore do not have any
information on accessions with different ranges of salinity
tolerance. The results of the mean regression for salinity
tolerance indices are shown in Table 2. It shows that, on

Table 2 Results of mean regression between plant traits in saline
conditions and SWP index

Traits in saline conditions  Coefficient value  Standard error  p-value
Intercept 7.506834 0.054184 2e-16*
Plant height (cm) 0.014669 0.009262 0.114
Flowering time (days) -0.050227 0.012705 9.12e-05*
Ripening period (days) -0.065254 0.100945 0518

Ear number per plant 0.588800 0.127725 544e-06 *
Grain number per ear 0.291359 0.031424 2e-16*

The three columns represent the estimated coefficient value, standard error and the
p-value for the respective covariate in the model with SWP as the response,
obtained by fitting a multiple mean regression model with sample size 404. The
significant p-values are marked with a *, for a significance level of 0.05
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average, the ripening period does not have a significant
effect on SWP, but quantile regression revealed that the
ripening period is significant for the high quantiles of
SWP.

High salt tolerant and high yielding accessions

Saade et al. [33] showed how SWP outperforms STI in
terms of selecting salt-tolerant accessions and how it
chooses accessions with higher marginal yield than those
chosen by S/C. Here, we propose a flexible approach to
classify the observations using conditional and marginal
quantiles. The conditional and marginal quantile levels
can be chosen by practitioners according to their interest
as a trade-off between high salt tolerance of accession and
high yield. The observations are classified using the inter-
section of the fitted univariate quantile regression line
and marginal quantile line. We consider the distribution
of yield under saline and non-saline conditions to illus-
trate the use of this method. Here, we are interested in
accessions with a high stress tolerance together with high
yield under non-saline conditions. Accessions lying above
the fitted conditional quantile line, for yield under saline
conditions conditioned on non-saline conditions, are salt
tolerant, while those lying above the marginal quantile of
yield under saline conditions have a high yield. We take
the intersection of both conditions and obtain the top-
performing accessions. This method was applied to yield
under saline and non-saline conditions of barley. The best
performing accessions in terms of both salt tolerance and
high yield are identified with green circles lying above the
85t conditional and 90 marginal quantiles (Fig. 3).

Bivariate prediction of yield for given traits

The salinity tolerance indices depend on yield from both
saline and non-saline conditions, so to link an index to
a plant trait, we need to model the joint distribution of
yield for that plant trait. We applied the method of direc-
tional quantiles [32] to estimate the empirical distribution
of our bivariate data, non-parametrically. Using the direc-
tional quantile envelopes [32], we defined a way to predict
the bivariate vector of yield for a given covariate. We
linked the covariates of the yield under saline conditions
with the bivariate data. We predicted these envelopes
for a given value of the plant trait. Three p' directional
quantile envelopes (also known as depth contours) were
predicted, corresponding to p = p*,0.25,0.1; they were
called the median, inner and outer envelope respectively,
with p* being the highest quantile value obtained for a
non-empty quantile envelope in p € (0,1/2], which has
the highest depth. Since the observation corresponding
to the largest depth value in the data cloud is the deep-
est value, it is referred to as, multivariate median [34], we
named the envelope corresponding to the highest depth
value obtained, the median envelope.
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Fig. 3 High salt tolerant and high yielding accessions obtained using
conditional and marginal quantiles: The top-performing accessions
with respect to high tolerance and yield are identified with filled
green dots. The dashed blue and red lines represent the fitted lines of
quantile regression for quantile level 0.85 and 0.5 respectively, and
the solid blue and red lines are marginal quantiles of level 0.9 and 0.5
respectively. The accessions above conditional quantile level 0.85, but
below 0.9 marginal quantile levels are denoted by blue dots, and
represent accessions with high salt tolerance but not necessarily with
high yield

Figure 4 shows the predicted envelopes for three val-
ues of grain number per ear: 7, 11, 15. These values are
chosen from lower, median and upper quantiles of the
trait distribution so that the envelopes do not over plot.
These envelopes demonstrate the dependence of increas-
ing grain number per ear for p = 0.1, p = 0.25, p = p*,
forming the outer envelope, inner envelope, and the
median envelope respectively. The directional quantile
envelopes move upward along the data cloud, showing
the dependence on increasing the covariate grain number
per ear.

For a given value of grain number per ear, the bivari-
ate distribution of yield was estimated from the bivariate
median. SWP is then estimated from the bivariate regres-
sion estimates of yield in saline and non-saline conditions.
Using the bivariate regression estimates, we can com-
pute the estimate of any stress tolerance index for a given
plant trait since they are functions of yield in both condi-
tions. We obtain a comprehensive view of how the salinity
tolerance index varied for a given plant trait. Figure 5
demonstrates the effect of each plant trait, taken one at a
time, on the salinity tolerance index SWP.

The results of the bivariate quantile regression were
then compared with those obtained using a standard
univariate quantile regression method. We observed an
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apparent increase in the value of the index as the grain
number per ear (Fig. 5h), ear number per plant (Fig. 5g)
and dry mass per m? (Fig. 5b) increases. However, the
increase was not always linear, and the slope varied with
the range of values of covariates. The stress-weighted per-
formance index (SWP) increased linearly as the ear num-
ber per plant increased to 3; it then stopped increasing,
even with the further rise in ear number per plant (Fig. 5g).
A possible explanation is that the plant can still cope with
the salt stress while producing seeds, but up to 3 ear num-
ber per plant, after which, producing more seeds comes at
the expense of salinity tolerance. SWP remained approx-
imately constant for small values of flowering time, and
then it decreased linearly as the flowering time increased
(Fig. 5e). A possible explanation is that the yield of late-
flowering plants grown under saline conditions is also
affected by heat as the season progresses.

Discussion

The study of salinity tolerance is crucial to improve crop
yield in salt-affected areas. We provide methods to study
the effect of plant traits on salinity tolerance. We show
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that the quantile analysis methods are advantageous over
mean regression methods for studying the relationship
between covariates and the entire distribution of response
by performing a salinity tolerance analysis. Using quan-
tile analyses, we study traits affecting plants with extreme
yields and high salinity tolerance indices.

The univariate quantile analysis is a simple approach
that yet gives a thorough visualization of how the plant
traits affect the complete distribution of yield for both
non-saline and saline conditions and also the difference
in the estimated effects between the two conditions. A
limitation of this study is that the standard errors of
the estimates were high, due to small sample sizes and
some of the variables might be nonsignificant due to high
uncertainty of the estimated values.

We propose bivariate quantile analysis methods to study
the effect of plant traits on salinity tolerance indices. The
added value of using bivariate quantile regression is that
it provided the ability to predict the bivariate response for
a given value of covariate, whereas the traditional method
of quantile regression reduced the response to univariate,
by taking the ratio of the yield under saline conditions to
the square root of yield under non-saline conditions. As
previously mentioned, computing a stress index reduces
dimensionality to one; hence, we lose information. In the
method we used, we do not need to compute the index
before making the prediction; we can find the relation-
ship of the plant traits with any salinity tolerance index,
once we have predicted the bivariate distribution of yield.
Another advantage of using this bivariate quantile regres-
sion is that it allows nonlinearities in response by using
cubic splines on the covariate. Also, since the yield in two
conditions is related, it is favorable to model the joint dis-
tribution of yield for a given plant trait instead of modeling
merely a univariate function of the two components of
yield. With bivariate quantile regression, we have the esti-
mates yield in saline and non-saline conditions for a given
plant trait, but with conventional univariate regression, we
cannot recover the individual estimates of yield. Although
the model described for bivariate quantile regression stud-
ies the effect of only a single covariate on the response at
a time, it could be extended to study multiple covariates
by including spline functions for multiple covariates in the
model.

Conclusions

From the different quantile analysis approaches we used
in this paper, we made new observations and found out
information that could not be previously obtained from
analyses such as those presented in Saade et al. (2016)
[33]. From quantile analyses, using yield and plant traits
under saline and non-saline conditions, we observed the
effects of plant traits on yield. We observed that a late
flowering time has a negative impact on yield in saline
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conditions, for accessions with high yield. From quantile
analyses, using SWP index, we noticed that an increase in
ear number per plant and grain number per ear increase
the salinity tolerance index and in case of grain num-
ber per ear the rate of increase is larger for accessions
with high yield. On the contrary, a late flowering time
decreases the salinity tolerance index for accessions with
high yield. The use of conditional and marginal quantiles
provides a flexible approach for selecting high yielding and
high salinity tolerant accessions. From bivariate quantile
analysis methods, we observed that SWP remains sta-
ble for earlier flowering times and then starts declining

as the flowering time increases. SWP increases with an
increase in the ear number per plant, and then stabilizes
for higher values without any further increase, while it
continuously increases for grain number per ear. These
observations are biologically relevant and may impact on
our understanding of mechanisms of tolerance to salinity.

Methods

Plant material

The plant material consisted of 404 barley accessions from
a barley association mapping (AM) population provided
by Prof. Robbie Waugh from the James Hutton Institute,
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United Kingdom. All accessions were 2-row spring barley
cultivars.

Field trial

Plants from the AM population were grown at the Inter-
national Center for Biosaline Agriculture (ICBA, Dubai),
over a year, from 2013 to 2014. Plots were irrigated with
fresh (1 dS/m; referred to as ‘non-saline’) and saline water
(17 dS/m; referred to as ‘saline’). An augmented design
was used where salt tolerant check lines (116/2A, 58/1A,
and CM72) were added every seven plots on average.
Detailed descriptions of the field design and practice are
provided by Saade orton (2016), who grew and stud-
ied another population, HEB-25 [33]. The following plant
traits were recorded under both conditions: flowering
time (days), ripening period (days), plant height (cm), ear
number per plant, grain number per ear, thousand grain
mass (g), dry mass per m? (g/m?), grain mass per m?
(g/m?, referred to as yield), and harvest index. A detailed
description of each trait and how it was measured is pro-
vided in Saade et al. (2016) [33]. The experiment that
generated the raw phenotypic data used in this paper was
originally designed for an association mapping analysis of
salinity tolerance in barley.

Univariate quantile analyses

As defined in the book “Quantile Regression” by Roger
Koenker [35], for a given real-valued random variable Y
with a distribution function F, the p™ quantile is given by

Qp) =F Y(p)=infly: F(y) = p} for 0<p<1.

If we denote the p™ conditional quantile function as
Q| x) = xT B(p), the optimization problem of quantile
regression can be formulated as

n
i N
gﬁ}j;pp (yz x, ﬁ),
1=

where p,(#) = u(p — 1(u < 0)) is the loss function, and
1(-) is an indicator function. The y;’s represent the real-
izations of the response variable; x is the design matrix
with the first column as the unit vector, and the rest of
the columns represent the values of the covariates; § is
the vector of regression coefficients. Regression coeffi-
cients of a quantile regression model are estimated by
minimizing the loss function p,(#). We include the saline
and non-saline groups in a common model by includ-
ing a categorical covariate for that condition classification
and adding its interactions with all the other covariates.
This allows the analysis to not only test and estimate the
effects of covariates for the saline and non-saline groups
separately, but also provide the possibility of testing and
estimating the differences between the estimated effects
of each covariate for the non-saline and saline groups. The
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categorical variable for the classification of non-saline and
saline conditions was coded as a dummy variable. The
model used for univariate quantile regression is given by

p p
yi= ﬁo-l—z ﬂjxij+aoDi+Z aDixjjt+e;, i=1...,n,
j=1 j=1

where y is the response, fo, @o, Bjand @j, j = 1,...,p are
regression coefficients, xj, j = 1,...,p are covariates, D
is a dummy variable: D; = 1 if i € non-saline group and
D; = 0if i € saline group and € is random error. Here, Dx;
denotes the interaction terms.

We eliminate the variables harvest index, thousand
grain mass (g), and dry mass per m? from our multiple
regression model as they are partial expressions of yield,
the response variable, so it might not be useful to study
their effects, and they could cause the problem of multi-
collinearity. After dropping these variables, the variance
inflation factors (VIFs) for all the plant traits was less than
2.5, so we consider all other plant traits as covariates in
the model. The sample size for the model was n = 808
(404 for saline and 404 for non-saline condition). We do
not scale the covariates to unit variance as we notice no
advantage gained by scaling and indeed, estimated effects
are far more interpretable in their original units. We cen-
ter the covariates just so that their mean is 0 and thus
the intercept represents the response (yield) at the mean
of all predictors. The model is fit using the rq() function
of the quantreg package in R for quantile levels ranging
from 0.1 to 0.9. Although we are interested in studying
the accessions with high yield, we investigate the model
for the whole range of quantiles, which allows us to check
for the stability in the coefficient value and examine the
change in slope as we move from lower quantile to upper
quantiles. After fitting the quantile regression model, we
plot the estimated values of coefficients and the estimated
95% confidence intervals of the plant traits as a function
of the quantile level to examine the relationship between
the plant trait and different quantiles of yield. The upper
and lower bounds for the estimated quantile regression
coefficients are calculated using the rankscore test inver-
sion [36]. This method is suitable in case of small sample
sizes (less than 1000). The assumption of independent and
identically distributed errors is also relaxed [37]. The test
of significance is determined using the confidence inter-
vals produced by rank inversion method. If the estimated
confidence interval around the observed effect includes 0,
then the effect is not statistically significant.

By plotting the estimated regression coefficients along
with the estimated confidence interval against the quantile
level, we were able to give a complete picture of the rela-
tionship between traits and response distribution in both
the non-saline and saline conditions separately and also
on the differences between the two conditions.
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We also performed a quantile regression analysis on
salinity tolerance index SWP [33] (stress-weighted perfor-
mance) for different quantile levels where the upper tails
of response distribution were of principal interest. SWP is
defined as

SWp = 25,

N

where ys denotes the yield under saline conditions and y.
yield under non-saline conditions. The salinity tolerance
index SWP was set as the response, and the plant traits
from saline conditions were set as the covariates and were
centered to mean 0. The model for univariate quantile
regression for salinity tolerance index is given by

p
yi=Po+ Y Brjte i=1...n
j=1

where y is the response, fo, B,/ = 1,...,p are regres-
sion coefficients, xj, j = 1,..., p are covariates and € is the
random error. The standard errors were computed using
the rankscore inversion test without the assumption of
independent and identically distributed errors.

To identify high salt tolerant and high yielding acces-
sions, we make use of conditional and marginal quantiles.
We regress yield under non-saline conditions on yield
under saline conditions using the model

yi=ax;+e€, i=1...,n

where y is the response, « is the regression coefficient, x
is the covariate and € is random error. We fit a univari-
ate quantile regression model to obtain the conditional
quantile function Qyx(p1) for quantile level p1. We also
obtain the marginal quantile function Q,(p2) for quantile
level py. The accession lying above the fitted conditional
quantile line, i.e., the accessions with positive residuals are
highly salt tolerant, while the accessions falling above the
marginal quantile of y, will have a high yield in saline con-
ditions, for chosen quantile levels p; and p;. By taking the
intersection of the two methods, we can identify highly
salt tolerant and high yielding accessions.

Web application for univariate quantile analyses

The method of univariate quantile regression analysis was
implemented in a broader framework, in an open-source
online application called MVApp [38]. The application
was built using the Shiny framework of R. This method
is available online at http://mvapp.kaust.edu.sa/MVApp/
and is freely and easily accessible. Users can upload their
data on the application and choose their response, covari-
ates, treatment and how they want to subset their data.
The results of the analysis can be downloaded as a sum-
mary table and as plots.
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Bivariate quantile analyses

The goal of bivariate quantile analysis method is to predict
the bivariate response, for a given covariate, by predicting
directional quantile envelopes for the bivariate distribu-
tion. The notion of directional quantile envelope was pro-
posed by Kong and Mizera [32] in 2012. In their approach,
they project the bivariate distribution to univariate dis-
tribution along a direction s, and obtain the quantiles of
the projected distribution, calling them directional quan-
tiles. Consider a normalized direction s, on the unit circle
S, the p™ directional quantile of the random vector Y, in
direction s, is defined by

Q,s) = infly : F(sy) > p}.

For p € (0,1/2], the p™ directional quantile line is
given by the equation s”y = Q(p, s) which indicates how
directional quantiles divide the data. The p™ directional
quantile envelope produced by Q(p,s) is defined as the
intersection,

D(p) = [ H(s,Qp,s)),

seS

where H(s,q) = {y : s’y > q} is the supporting half-
space. These envelopes are closely related to the Tukey
depth contours proposed by Tukey in 1975 [34]. They are
essentially Tukey depth level sets. The Tukey depth con-
tours completely characterize the empirical distribution,
for any multivariate dataset [39].

The directional quantile envelopes for bivariate data are
non-empty for p < 1/3, because of a result known as
the centerpoint theorem [40]. The points corresponding
to the highest depth are the deepest [34, 41]. We obtain
the highest value of p € (0.33,0.5) for which the enve-
lope is non-empty (for every case) and denote it by p*;
we call the envelope corresponding to p* as the median
envelope since the envelope corresponding to the high-
est p will have the highest depth. We take the average of
the vertices of the median envelope to obtain the bivariate
median. We then choose two values, 0.1 and 0.25, and call
the envelopes corresponding to these values the outer and
inner envelopes, respectively.

To construct the p directional quantile envelopes for
a given covariate, we need to obtain the p™ directional
quantile for the given value of covariate in a subset of
all the directions along a unit circle. For each direction
s, we model the projected distribution sy using a cubic
spline function of the given plant trait. Let y;, = s”y;,i =

1,...,n, we fit the following quantile regression model for
quantile p
K
¥s; = Bo + Prxi + Pox? + B3xi + Z 8i(xi — k)3 + €,
j=1
i=1,...,n


http://mvapp.kaust.edu.sa/MVApp/
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where y is the response, x is the covariate, Bo, 81, B2, B3,
and {Sj}jKZ | are regression coefficients, and {kj}jK: | are pre-
specified set of knots. The number of knots were fixed to 3
and the knots are typically chosen as suitable quantile of x.
From the fitted model, we obtain the p'" directional quan-
tile for a given value of covariate x, in direction s, denoted
by Q(p, s). Then the predicted p™ directional quantile
envelope for a given value of covariate x, produced by
Q(p, s) is defined as the intersection,

Dp) = (") H(s, Qp,s)).

seS

Hence, we predict the bivariate distribution of yield by
predicting the bivariate median for a given covariate. The
salinity tolerance indices are functions of yield under both
conditions. So the predicted estimates of yield under both
conditions from bivariate quantile regression were used to
compute the salinity tolerance index SWP. After obtaining
the estimates of yield in non-saline and saline conditions,
we estimated SWP as

A

s
Ve

where (Js, Jc) are bivariate quantile regression estimates of
yield under saline and non-saline conditions. Hence, for a
given plant trait, we obtain SWP, which is capable of iden-
tifying top-performing accessions in terms of high yield
and high salinity tolerance [33], together with its upper
and lower bounds obtained from the predicted outer and
inner envelopes.

SWP =
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