Chapter 8
Anhydrite Formation on the Coastal Sabkha
of Abu Dhabi, United Arab Emirates

Michael A. Wilson, Shabbir A. Shahid, Mahmoud A. Abdelfattah,
John A. Kelley, and James E. Thomas

Abstract A fluvial marine sabkha along the coastal area of Abu Dhabi, United
Arab Emirates, is hypersaline from evaporative losses of groundwater originating
from rain, seawater intrusion, lagoons that border the sabkha, and inland groundwater
sources. Anhydrite (CaSO,) is present in these soils and is regarded to be both a
neoformed mineral and a product of gypsum transformation. Six pedons (designated
1-6) were described, sampled, and characterized from a 13-km transect across the
sabkha in order to better understand the distribution of anhydrite across the sabkha,
determine suitable laboratory methods for detection and quantification of this
mineral, and evaluate soil genesis and mineral formation. Soils were highly saline
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with electrical conductivity (EC1:2) ranging from 11 to 167 dS m™'. Evaporative
minerals identified by x-ray diffraction include calcite, gypsum, halite, aragonite,
and anhydrite. Together, salts, gypsum, and anhydrite composed 5-100% of the
mineral matter of sabkha soils. Quantification of anhydrite was achieved by
the difference in the acetone method (gypsum +anhydrite quantification) and
low-temperature weight loss (for gypsum quantification). Both a thermal gravimetric
analyzer (TGA) and an oven were tested for the latter procedure. The TGA method
was found to provide the most reliable data, while the oven method yielded
inconsistent results. Anhydrite was identified in the two sites (pedons 5 and 6) most
distant from the coast, ranging up to 43% of the <2-mm fraction and occurring in
thicknesses of 70 and 55 cm, respectively.

Keywords Fluvial marine * Anhydrite formation ¢ Coastal sabkha * Hypersaline
* Evaporative * Abu Dhabi ¢ Thermal analysis

8.1 Introduction

Sabkhas (salt flats) are widely distributed in the coastal areas around the world.
Detrital sediments, plus soluble elements from the marine environment, create a suite
of carbonate, chloride, and sulfate minerals. The climate of the Arabian Peninsula
creates unique conditions that influence the resulting mineralogical suite in sabkhas
of this area. Anhydrite (CaSO,) is a mineral that has been documented in this
area, both a neoformed mineral and as a product of gypsum (CaSO,*2H,0) trans-
formation, due to the combined effects of high salinity and temperature. Anhydrite
develops in these soils and remains stable in the vadose zone above the water tables
(Aref et al. 1997; Sanford and Wood 2001; El-Tabakh et al. 2004; Shahid et al.
2007). This process is well documented to occur during carbonate deposition where
anhydrite is a common by-product (along with gypsum) associated with seawater
evaporation (El-Tabakh et al. 2004; Melim and Scholle 2002). Often this process
occurs under elevated burial temperatures or due to hot fluid-rock interactions
(Kasprzyk and Orti 1998).

The coastal area of Abu Dhabi, United Arab Emirates (UAE), is hypersaline
from evaporative losses of groundwater originating from rain, seawater intrusion,
lagoons that border the sabkha, and inland groundwater sources. Sanford and Wood
(2001) documented that the water within the sabkha soils of Abu Dhabi is principally
derived from rainfall, with the major source of solutes from the slowly permeable
Tertiary formations of marl and gypsum that underlie the sabkha and create episatu-
rated conditions within soils. Their results show that the lateral intrusion of seawater
is very low due to the slow groundwater flux due principally to the low gradient of
the sabkha (typically 2x 10~ m m™') (Sanford and Wood 2001).

The recent soil survey of the Abu Dhabi Emirate (EAD 2009) has documented
the presence of mapping units principally composed of soils dominated by anhy-
drite within the coastal sabkha. This discovery resulted in a formal proposal for the
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modification of Soil Taxonomy (Soil Survey Staff 2010). This proposal included
the formation of an anhydritic family mineralogy class to separate these soils
dominated by anhydrite from gypsum-rich soils (Abdelfattah and Shahid 2007;
Shahid et al. 2007). The inclusion of this family mineralogy class in Soil Taxonomy
requires the quantification of anhydrite. This study was created to help determine
the distribution of this mineral in the broad, level mapping units of Abu Dhabi
sabkhas and to investigate laboratory methods that would assist in the identification
and quantification of anhydrite. Thus, the objectives of this study are to investigate
methods to identify and/or quantify anhydrite in soils, determine the distribution of
anhydrite in selected soils across a coastal sabkha, and discuss factors affecting the
genesis and distribution of this mineral. Knowledge gained in this study should have
applicability across the region, but also globally in other arid, hot coastal and inland
regions (e.g., playas) that are locations of salt accumulations.

8.2 Materials and Methods

8.2.1 Soil-Forming Factors

Abu Dhabi is located on the north coast of the Arabian Peninsula within the
United Arab Emirates (Fig. 8.1). The coastal area of Abu Dhabi is composed of
three geomorphic areas: islands, shoal and channel areas of the lagoons, and the
coastal sabkha (Butler 1970). The fluvial marine sabkha (broad coastal plain) is
over 400 km in length and up to 16 km in width (de Matos 1989). The sabkha
slopes toward the sea at about 0.4 m km~' (Evans et al. 1969). Tertiary-aged
geologic materials underlie and border the sabkha on the southeastern perime-
ter, partially buried at the surface by Holocene-aged dunes and gravels. The
sabkha is composed of Quaternary (Pleistocene and Holocene-aged) sediments
derived from aeolian and fluvial materials, with overlying lagoon and tidal
deposits, and other evaporative and chemically precipitated minerals developed
in this current environment (Evans et al. 1969; Butler 1970). The water table
forms by water perching on the Tertiary-aged strata that underlie the sands
(Sanford and Wood 2001).

The aeolian sediments were principally deposited during a stage when the
Arabian Gulf was dry and winds transported the exposed sands from the gulf
bottom onto the land area along the coast (Alsharhan and Kendall 2003). The sand
is currently about 10 m deep (Sanford and Wood 2001). Following the last glacial
maximum (18,000 years before present-ybp), water transgressed and reached
the present shoreline by 6,000 ybp (Lambeck 1996). The maximum transgression
of the sea inundated the area for a short time following this period, then regressed to
its present level when the current shoreline was established (Evans et al. 1969). The
area has been relatively stable and undergoing pedogenic development for about
4,000-5,000 years (Evans et al. 1969; Lambeck 1996).
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Fig. 8.1 Map showing the location of the United Arab Emirates. The “x” denotes to general area
of the study

8.2.1.1 Climate

Summer temperatures are extremely hot (mean summer temperature of 32.8°C) with
maximum temperatures between June and September, ranging up to and exceeding
50 °C. Winters (December to February) are characterized as short and mild, with a
mean temperature of 19.0 °C (minimum temperature as low as 3°C). Mean annual
rainfall is 29 mm (NCMS 2009). Vegetation is largely absent in the sabkha but
includes blue-green algal mats in intertidal zones and sparsely populated halophytes.

8.3 Sampling and Laboratory Analysis

A 13-km-long transect was established across the sabkha starting at the shoreline
(Fig. 8.2). Six pedons were sampled by horizon and macromorphology described
(Schoeneberger et al. 2002). Bulk samples were air dried and sieved to <2-mm.
Laboratory analyses followed by codes were performed according to Burt (2004).
For particle size distribution analysis (PSDA) (method 3A1), the fine-earth fraction
was dispersed following removal of organic matter and soluble salts, and the sand
fraction was separated by wet sieving. Silt and clay fractions were measured by
pipette method. Total C, N, and S was determined by dry combustion (6A2f) and
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Fig. 8.2 Study area showing the six sites. Distance from site 1 to site 6 is 13 km

calcium carbonate equivalent (CCE) by use of an electronic manometer to quan-
tify gas evolution following acid contact in a closed vessel (6E1g). Total analysis of
the <2-mm fraction was determined by microwave digestion in concentrated HF,
HNO,, and HCI, with determination of elements by ICP spectroscopy (4H1b).
Electrical conductivity (EC1:2) was measured on a 1:2 (soil to solution) mixture
(4F1alal). The liquid from a saturated paste was extracted and electrical conductiv-
ity (ECsat), cations, and anions determined (4F2). The equivalent gypsum content
(EGC) was measured using the method of Elrashidi et al. (2007). Intact pieces of
soil fabric were collected and dipped in an elastic saran mixture, with bulk density
(4A1d) and water retention (4B 1¢) quantified at 33 kPa. Water retention at 1,500 kPa
was measured on <2-mm air-dried soil (3C2ala).

Anhydrite was quantified by the difference in two measurements: (a) water dis-
solution/acetone precipitation (4E2a) that measures both gypsum and anhydrite and
(b) gypsum by weight loss. Measurement of gypsum by quantifying the weight of
the crystalline waters of hydration was determined by using both thermal gravimetric
analysis (TGA) and the method of Artieda et al. (2006). The TGA method measured
the weight loss by heating the sample from 20 to 200 °C at a rate of 2 °C min™'. The
weight of water loss between 75 and 115°C was used to quantify the gypsum based
on a theoretical weigh loss of 20.9% (Karathanasis and Harris 1994).
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The Artieda method measured the weight loss of a sample between the temperatures
of 70 and 90°C, and gypsum was calculated by

Percent Gypsum = {[ (ws—wf )/ (ws—wt)]100[ (100/14.95)]}

=[(Ws—wf)/(ws—wt)] 669 &1

with

ws=weight of sample dried at 70 °C plus weight of sampling dish
wf=weight of sample dried at 90°C plus sampling dish
wt=weight of sampling dish

14.95 =the recovery factor of gypsum between 70 and 90 °C

A Pyrex crystallizing dish was used for drying the sample. Weights were collected
for several days at multiple temperatures. Based on agreement with both a gypsum
mineral standard plus laboratory soil standard with gypsum quantified by the
acetone method, reported data was recorded at both 70 and 90 °C after 3 days of
equilibration in the oven at the respective temperature.

Mineralogy of the <2-mm fraction was performed by crushing the soil material
to less than 0.02 mm, placing on a deep-well slide holder, and analyzing by Cu-K
alpha radiation from 2 to 60°20. The mineral composition of the fine sand
(0.1-0.25 mm) or very fine sand (0.05-0.1 mm) fraction (following particle size
analysis procedure that removes salts and gypsum) was determined by mounting the
grains on a glass slide with an epoxy cement (refractive index=1.54) and counting
300 grains using a petrographic microscope with plane- and cross polarized light
(7B1a2). Thin sections of intact soil material were prepared by epoxy impregnation
(refractive index=1.54). The soil fabric was examined with a polarizing petro-
graphic microscope and features described.

8.4 Results

8.4.1 Field Morphology

All pedons were weakly developed and commonly light yellowish or pale brown at
the surface (10YR 6/4 or 6/3) to white or light gray (I0YR 8/1 or 7/2) in the subsoil
(Table 8.1). The soils are generally sandy textured. White or light gray carbonate or
gypsic cemented layers were present in the subsoil of most pedons. Sanford and
Wood (2001) described similar features as algal and dolomitic crusts. Small seashells
were found in the subsoil (generally at depths between 50 and 100 cm) of pedons 3,
4, and 5, suggesting that these layers were developed when the area was submerged
in water. The depth to the water table at time of sampling ranged from 105 to 130 cm
in all soils with the exception of the tidally influenced pedon nearest the seashore.
Thin, cemented surface crusts were present at most sites.
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Fig. 8.3 Landscape (a) and profile of pedon 6 (b). Anhydrite is the white zone in the upper part of
the profile

Specific morphological indicators were regarded by the authors as unique to
mineral concentrations of anhydrite in this environment. They were a combination
of white color (5Y or 10YR 8/1 or 8/2), clayey/silty textures, and/or thixotropic
nature. Based on these field criteria, the Bkyz horizon (822 cm) of pedon 3, B’kyz2
(60-90 cm) and B’kyz3 horizons (90-115 cm) of pedon 4, Bz horizon (27-35 cm)
of pedon 5 (Fig. 8.3a, b), and Bz (540 cm) and Bkyz (40-50 cm) of pedon 6 were
regarded as possible layers with accumulations of anhydrite.

8.4.2 Carbonates, Equivalent Gypsum, and Salts

Pedon 1, the site closest to the shoreline, has the lowest salt concentrations of all
sampled pedons with EC1:2 ranging from 10.7 to 23.7 dS m™! (Table 8.2). The site
is tidally influenced (component of the intertidal zone) and any salts that precipitate
by evaporation would be transient with diurnal fluctuation of the water. The pH is
highest in this pedon (8.5-8.9) relative to the other sites in the study.

The other pedons (2—6) have salt accumulation in surface horizons, with EC1:2
values (Table 8.2) ranging from 84 to 162 dS m'. The ECsat on some surface
horizons exceeded the detection limits of the instrument (>200 dS m™). The EC1:2
in subsoil horizons varies from 29 to 95 dS m™' (ECsat=90-190 dS m™). Saturated
paste EC values are higher than EC1:2 due to lower dilution ratios and provide a
reasonable measure of soluble salt concentrations present in solution at field capacity,
though all salts are not dissolved at this water content. The EC1:2 is advantageous
as this value represents a fixed soil to water ratio, resulting in more comparable
salinity values between horizons.

Equivalent gypsum content is a good measure of total water soluble minerals
(gypsum, anhydrite, and minerals more soluble) of the <2-mm soil material.
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Table 8.2 Selected chemical properties of the soils

M.A. Wilson et al.

Equiv.
Depth EC (1:2) EC(sat) gypsum CaCO, ZEqGy+CaCO,

Horizon (cm) (dS m™) % pH
Sabkha site 1

Cz1 0-3 16.5 86.2 29 47 76 8.7
Cz2 3-7 10.7 534 33 48 81 8.5
Cz3 7-16 13.5 74.0 6 61 67 8.5
Cz4 1642 23.7 113.7 7 67 74 8.7
R 42-46 19.5 84 8.9
Sabkha site 2

Salt crust 129.9 >200 67 44 111 7.6
Azl 0-10 140.1 >200 66 42 108 7.6
Az2 10-20 55.3 186.4 23 69 92 8.1
Bkz1 20-42 48.1 151.6 18 82 100 8.5
Bkz2 42-68 48.4 167.1 15 80 95 8.3
Bkzm 68-92 36.1 123.6 74 8.1
Byz 92-107 46.7 141.1 16 63 79 8.0
Cyzg 107-150 40.0 148.5 11 61 72 7.9
Sabkha site 3

Salt crust 167.4 >200 76 44 120 7.5
Az 0-8 130.1 >200 62 52 114 7.7
Bkyz 8-22 65.6 175.4 23 77 100 7.9
Bkyz 22-38 38.5 1194 15 87 102 8.3
Bkyzm 38-56 38.1 110.1 16 87 103 8.1
B’kyz 56-59 29.6 89.6 12 89 101 8.2
B’kyzm 59-70 41.8 119.7 16 82 98 8.1
BCkyz 70-105 45.4 141.2 17 81 98 8.2
Ckyzg 105-150 55.0 176.1 19 73 92 7.9
Sabkha site 4

Salt crust 147.6 >200 68 42 110 7.2
Az 0-7 83.7 >200 34 45 79 7.7
Bkyz 7-20 29.4 103.6 10 55 65 7.9
Bkyzm 20-23 31.5 97.2 31 47 78 7.9
B’kyz1 23-60 38.2 1153 18 57 75 7.6
B’kyz2 60-90 48.7 146.8 16 77 93 7.7
B’kyz3 90-115 65.1 146.1 24 81 105 7.8
BCkyz 115-123 50.3 151.0 18 84 102 7.9
Cyzg 123-150 67.8 151.6 22 73 95 7.6
Sabkha site 5

Akyzl 0-10 135.1 >200 75 39 114 7.4
Bkyz 10-27 30.8 147.0 38 44 82 7.8
Bz 27-35 91.4 190.3 95 14 7.6
Bkyzl 35-50 47.5 175.0 76 30 106 7.9
Bkyz2 50-70 49.3 164.1 56 48 104 7.9
2Bkl1zl1 70-95 74.4 181.3 25 72 97 8.0

(continued)
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Table 8.2 (continued)

Equiv.
Depth EC (1:2) EC(sat) gypsum CaCO, ZEqGy+CaCO,

Horizon (cm) (dS m™) % pH
2Bk2z2 95-110 57.1 162.7 26 80 106 8.1
Sabkha site 6

Akz 0-5 161.9 >200 98 26 124 7.5
Bz 5-40 95.9 129.9 108 4 112 7.7
Bkyz 40-50 529 104.5 71 35 106 8.1
Byzm 50-55 473  171.0 6 7.9
Cklzl 55-100 29.0 155.1 9 34 43 8.3
Ck2z2 100-140 31.7 140.5 11 28 39 8.2

These EGC values (Table 8.2) ranged from 34 to 98% in pedons 2—6. Equivalent
gypsum generally decreased in the subsoil and was <25% in the subsoil of all
pedons. Carbonates were generally the lowest in the surface where they ranged from
26 to 52% and up to 89% in the subsoil. Together, these two mineral groups
(as measured by EGC and CCE) composed from 70 to 100% of the mineral matter
in most horizons. The salt crusts sampled for pedons 2, 3, and 4 were composed of
about 40% carbonates and 60% equivalent gypsum materials. For two of the three
pedons, the equivalent gypsum is only slightly higher in the salt crust than in the
A horizon (which included the salt crust). These results suggest that the “salt crust”
is similar in composition to the surface soil horizon in these sites.

Elemental analysis of saturated paste extracts (Table 8.3) shows that Na >>Mg>
Ca>K. Sodium had the highest concentration due to the greater solubility of Na
salts in the saturated paste compared to other minerals. This was reflected in sodium
adsorption ratio (SAR) values exceeding 300 in certain horizons. Magnesium is
between 2 and 3 times higher in concentration in saturated paste extracts relative to
Ca. Suarez (2005) indicates a ratio of Mg/Ca in seawater of 5, similar to these
results. Mg is commonly higher due to the lower solubility of Ca minerals such as
calcite, aragonite, and gypsum, thus creating a sink for the Ca ions in solution. Total
analysis of the <2-mm fraction (Table 8.3) indicated a much greater abundance
of Ca overall, with a Ca to Na ratio ranging from 1:1 to 28:1 and an average of 10:1.
This ratio is similar for Mg, with an average Ca to Mg ratio of 11:1. These results
illustrate an overall greater abundance of Ca in the soil matrix.

Chloride was the dominant anion in saturated paste extracts, generally 30-60
times higher than SO,. Carbonate anions were not present; bicarbonate was
<1 mmol L. This ratio decreased in horizons associated with anhydrite formation
ranging from 10 to 35%, reflecting an increase in SO, content of these horizons.
This increase in S is also reflected in the total S, ranging up to 16%S.

8.4.3 Measurements for Gypsum and Anhydrite

The acetone measurement cannot differentiate between gypsum and anhydrite and
extracts both minerals together. The results (Table 8.4) show that minerals in this
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“group” (gypsum+anhydrite) were concentrated in upper horizons (upper 50 cm)
of pedons 1-4, ranging from 0 to 24%. Surface salt crust in pedons 2, 3, and 4 had
gypsum+ anhydrite ranging from 5 to 9%. Gypsum + anhydrite was concentrated in
the upper 70 and 55 cm for pedons 5 and 6, ranging from 13 to 47%. Concentrations
were <2% below these depths for the latter two pedons.

Analysis for gypsum by weight loss (Artieda et al. 2006) found reasonably close
agreement with the acetone method for pedons 1-4 (Table 8.4). This agreement sug-
gests that no anhydrite was present in the first four pedons. Anhydrite was suspected
during the field examination in the Bkyz horizon of pedon 3 and in the B’kyz2
(60-90 cm) and B’kyz3 horizons (90-115 cm) of pedon 4. But very minor amounts
(£0.1%) of gypsum +anhydrite were found in these horizons.

The presence of anhydrite (as indicated by the positive difference between the
acetone and weight loss methods; i.e., Eq. 8.1) was found in pedons 5 and 6.
Anhydrite was determined by this approach to be in the Bz horizon (27-35 cm) of
pedon 5 and the Akz, Bz, and Byzm horizons of pedon 6 in amounts ranging from
12 to 44%.

Negative values for calculated anhydrite using Eq. 8.1, ranging from —12 to
—34% (Bkyzl and Bkyz2 of pedon 5 and Bkyz of pedon 6), reflect greater gypsum
measured by weight loss than gypsum+anhydrite by the acetone method. Small
negative differences were common for other samples as the difference between
methods for pedons 1-4 ranged from 1.0 to —3.8%. These similar values were
regarded as generally equivalent, representing methodological differences.

Large negative values for anhydrite using the oven weight loss method (Eq. 8.1)
suggest a possible interference or methodological problem. To better understand the
problem, both the acetone and weight loss procedures were duplicated for pedons 5
and 6. Low standard deviations for the acetone method suggest good reproducibil-
ity. Standard deviations of the weight loss method range from 5 to 22%, illustrating
that this method has limited reproducibility. Possible interferences in these samples
contributing to the excessive weight loss between 70 and 90 °C may be other miner-
als (hydrated salts) or clay minerals such as smectite (Lebron et al. 2009). These
soils have low clay percentages, and analyses show that no aluminosilicate minerals
such as smectite were present in the clay fraction to contribute as a source of
erTors.

A possible positive interference in the weight loss method by hydrated salts is
not apparent. The ECsat for these three horizons in question ranged from 104 to
175 dS m!, very similar to ECsat from other horizons in these two soils where no
negative calculated anhydrite values occurred. Also, other horizons with similar
ECsat show good agreement between the two methods. For example, horizons Azl
in pedon 2 and Bkyzm in pedon 3 both have ECsat >97 dS m™ and have gyp-
sum +anhydrite by the acetone methods of 20 and 13%. The corresponding values
for the weight loss method are 22 and 14%, respectively.

Thermal gravimetric analysis (TGA) (Fig. 8.4) was performed on all horizons
from pedons 5 and 6 as a second method to quantify gypsum by weight loss. While
positive interferences are possible with the thermal analysis method, overall, gyp-
sum measured by TGA (Table 8.4) was lower than quantities measured by the oven
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Fig. 8.4 Thermal gravimetric analysis (TGA) pattern illustrating loss of weight from heating the
<2-mm soil from the Bkyz1 horizon of pedon 5

method. Good agreement between the two weight loss gypsum methods was
achieved with some samples, while large differences in measured gypsum between
the two methods also occurred. Large differences in results were those horizons
with large negative anhydrite values when using data from the oven method. For
example, the Bkyz2 horizon of pedon 5 had 62% gypsum by the oven weight loss
method versus 8% gypsum by TGA. Since both methods measure the weight of
water loss from gypsum, these TGA data suggest that the oven method has prob-
lems for gypsum quantification that are not necessarily interferences of water loss
from other minerals.

The TGA results suggest that anhydrite was present in the upper 70 and 55 cm of
pedons 5 and 6, respectively, with anhydrite quantities ranging from 7 to 45%.
These concentrations are somewhat lower than found in other studies of the sabkha
that reported percentages ranging up to 98% (Shahid et al. 2009). The ratio of anhy-
drite to gypsum in these horizons ranged from 1:1 to 36:1. Largest ratios were pres-
ent in Bz horizons of both pedons.

8.4.4 X-Ray Diffraction and Optical Analysis

Evaporative minerals in the <2-mm fraction identified by x-ray diffraction (Table 8.4)
include calcite, gypsum, halite, aragonite, and anhydrite. No conclusive evidence
for bassanite (CaSO,*}2 H,0), mineral that would be considered the intermediary
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between gypsum and anhydrite, was found in these samples. Anhydrite was detected
by this method in the upper 4 horizons of pedon 5 and all horizons of pedon 6.
Detection of this mineral is based primarily on a peak at 0.350 nm, with possible
secondary peaks at 0.285, 0.233, and 0.387 nm, and other minor peaks. Relative
amounts, based on peak intensity of the 0.35 nm peak, vary. The greatest quantities
were in the Bz horizons of pedon 5 and the Akz, Bz, and Byzm horizons of pedon 6.
These results are in reasonable good agreement with the anhydrite detected by the
TGA method. The only major difference is the Bkyz2 horizon (50-70 cm) of pedon
5, with 20% anhydrite measured by the acetone/TGA method, while no anhydrite
was detected in the <2-mm fraction by x-ray diffraction. This may suggest that the
acetone/TGA method overestimates anhydrite for some samples, but also the lack
of the major 0.350 nm anhydrite XRD peak in the sample does not rule out the pres-
ence of the mineral. There were several minor peaks present in the XRD analysis of
that horizon that could be assigned to anhydrite.

Anhydrite occurs in a variety of forms and sizes. For example, it forms microcrys-
talline to coarse crystalline fillings as well as lath- or fiber-like forms (El-Tabakh
et al. 2004). Sand-sized anhydrite under the microscope is distinct from other minerals,
especially gypsum. It has a refractive index >1.54 and a high birefringence under
cross polarized light. Cleavage is generally at right angles or parallel to the mineral
axis resulting in elongated, angular mineral forms. Gypsum can be distinguished
from anhydrite due to a refractive index <1.54 and low birefringence. Calcite has a
variable (double) refractive index (can be both below and above 1.54) depending on
direction of orientation, as well as extreme birefringence and rhombohedral cleavage
in the macrocrystalline form (Kerr 1977). Often, calcite is microcrystalline in soils
and tends to segregate from other minerals (not adsorbed to other mineral surface),
forming homogeneous deposits in voids (Chadwick et al. 1987).

Optical analysis (Table 8.4) of the fine and very fine sand fractions shows that
carbonate aggregates and calcite were the most common mineral forms identified.
Quartz and orthoclase feldspar were also identified in amounts up to 20%. The sand
fractions analyzed are derived from the particle size analysis procedure. Washing
pretreatments in this procedure will remove all salts and possibly much of the gyp-
sum and anhydrite. Gypsum was found only in the Bkyz horizon of pedon 6, while
anhydrite was optically identified in several horizons of pedon 5 and 6, composing
21% in the sand fraction of Bz horizon of pedon 5 and 92% of the sand fraction in
the Byzm horizon of pedon 6. The grains of anhydrite are principally elongated and
highly birefringent under cross polarized light (Fig. 8.5a, b). These results suggest
that gypsum is much more soluble than anhydrite (relative to the PSDA washing
procedure).

In thin sections of natural fabric, anhydrite was present as randomly oriented
grains in aggregates. This nodular form agrees with both Evans et al. (1969), who
identified anhydrite as soft plastic masses that range from having sharp to diffuse
boundaries with the surrounding soil matrix, and El-Tabakh et al. (2004), who
identified anhydrite beds with this mineral in a nodular form. The largest and most
well-developed anhydrite grains were in Byzm horizon of pedon 6. These grains
(Fig. 8.6a) ranged up to 0.5 mm in length and were highly birefringent. Figure 8.6b, ¢
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Fig. 8.5 Photomicrograph of anhydrite grains from the very fine sand (0.05-0.1 mm) fraction
pedon 6 (Bz horizon). Cross polarized light

Fig. 8.6 Photomicrograph of the soil fabric of the Bz horizon from pedon 6 illustrating the nodular
form of anhydrite aggregates. Anhydrite grains composing this horizon are in the very fine sand
size range. Cross polarized light. Photo width=2.5 mm (a). Higher magnification images of the
area enclosed by the box in (a) both in (b) plain and (c) cross polarized light. These images illus-
trate the variety of elongated grains as well as the Fe deposit along the boundary of the nodule.
Photo width=1.1 mm

illustrates frequent occurrence of Fe oxide deposition around the perimeter of the
nodules, indicating a hydrologic discontinuity between the nodules of anhydrite and
the rest of the soil matrix. The grains in the Bz horizons of pedons 5 and 6 were
smaller in size. This is especially true for pedon 5 where anhydrite grains appear to
be principally clay and fine silt (Fig. 8.7). These results illustrate that anhydrite
occurs in a range of particle sizes in these soils. This difference in the dominant size
fraction of anhydrite between horizons suggests a difference in mode of deposition,
conditions of formation, or age of the deposit. This difference in size of grains likely
accounts for the better agreement between the x-ray diffraction data on the <2-mm
fraction and the optical grain count data on a specific sand fraction (Table 8.4) for
certain horizons. For example, the Bkyz horizon of pedon 5 has no anhydrite
identified in the sand fraction by optical analysis, while anhydrite was present in the
x-ray diffraction data for the <2-mm fraction, suggesting anhydrite was present in
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Fig. 8.7 Photomicrograph of the soil fabric of the Bz horizon from pedon 5 illustrating the nodular
form of anhydrite aggregates. Much of the anhydrite in this horizon appears to be in the clay and
fine silt size range. Cross polarized light. Photo width=0.53 mm

the smaller particle size fractions only. Also, the Akz horizon of pedon 6 had an
XRD anhydrite peak with the relative size of 3, yet had only trace amounts of anhy-
drite identified in the sand fraction. As mentioned previously, these differences
could also be attributed to the dissolution of anhydrite from the sand fraction during
PSDA pretreatments used to derive the sand fraction for optical analysis.

8.4.5 Physical Properties

These soils (Table 8.1) are sandy textured, with >75% sand in the <2-mm fraction.
Due to pretreatments, the particle size data reflects the loss of soluble salts and
much of the gypsum and anhydrite from these samples, but still reflect similar
textures as determined in the field. Carbonates and carbonate-coated minerals
(e.g., carbonate-coated gypsum) likely remain following pretreatments.

Horizons with large anhydrite concentrations had greater amounts of silt than
comparable horizons. For example, the Bz horizon of pedon 5 and the Bz and Bkyz
horizons of pedon 6 (all with >30% anhydrite) had silt contents ranging from 52 to
81%. This particle size is generally accompanied by a greater 33 kPa water retention
and lower bulk density than other horizons. The bulk density of the three horizons
cited above ranged from 0.96 to 1.12 g cm™, and 33 kPa water retention ranged
from 42 to 56%. In contrast, the Byzm horizon in pedon 6 was determined to have
92% anhydrite by optical analysis, but a higher sand content and bulk density than
other anhydrite-rich horizon. The difference in this horizon was that it is cemented,
unlike the other more friable, anhydrite-rich horizons.
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8.5 Discussion

Mineral formation in soils is controlled by the elements present, their concentration
and form, as well as chemical and environmental conditions of the pedoenviron-
ment. In the level, coastal region of the Abu Dhabi Emirate, elements in soil solu-
tion derived from soluble mineral components of Tertiary deposits underlying the
sabkha, as well as from sea and lagoon water intrusion or overland flow, were con-
centrated via evaporation in the soil vadose zone. The most stable minerals, such as
calcium carbonates, were initially deposited. As alkaline anions (principally HCO,™)
were depleted via calcite deposition, then sulfate minerals, either gypsum or anhy-
drite, precipitated.

Anhydrite was identified in pedons 5 and 6 by the chemical/weight loss tech-
nique, x-ray diffraction, thin section, and optical analysis. The oven method used
to measure gypsum and then to calculate anhydrite exhibited poor reproducibility,
though appeared to work reasonably well in some samples. Measurement of gypsum
by thermal analysis (TGA), followed by anhydrite quantification, did provide more
consistent results when compared to other methods (x-ray diffraction, optical analysis).
Thermal analysis appears to have promise as a method of choice to quantify gypsum
in samples that also contain anhydrite.

X-ray diffraction is an excellent tool to identify the presence of anhydrite in
soils, but it only provides qualitative or possibly semiquantitative information.
Optical analysis is a reliable method to quantify anhydrite in the particle size range
of sand and coarse silt. This mineral has distinct characteristics under the micro-
scope. Anhydrite, unlike gypsum, appears to survive the washing treatment used for
particle size analysis, but dry sieving the soil is likely the best option for separating
a sample for analysis. The limitation of optical analysis would be that only a limited
size range can be easily identified under the microscope (0.02—2 mm) and anhydrite
exists in smaller particle size classes as well.

There was no anhydrite detected in pedons 1-4. These four pedons lack the
conditions to promote the formation or stability of anhydrite. Pedon 1 is located in
the intertidal zone, an area subjected to daily fluctuations of the tide. Pedons 2, 3,
and 4 are part of the lower supratidal zone (Shinn 1973), a zone of gypsum forma-
tion. Reoccurring seasonal flooding likely limits the formation and stability of
anhydrite in these soils.

Pedons 5 and 6, on the highest and most stable part of the sabkha, have anhy-
drite. This mineral was detected in the upper horizons (0—50 cm) of pedon 5 and all
horizons in pedon 6. The Bz horizon of pedon 5 and Bz and Byzm horizons in
pedon 6 were the zones of maximum anhydrite concentration in these soils. In Bz
horizons, sand, bulk density, and carbonates are at minimum values within the
profiles, while silt, water retention, and total S and SO, values are at a maximum.
While these trends are slightly different for the cemented Byzm horizon, it had the
highest total S of all horizons (16.2%). These trends in the data reflect the impact
of anhydrite on soil properties. Overall, based on the acetone/TGA method, anhy-
drite composed 22 and 39% of the mineral matter in the upper 50 cm of pedons 5
and 6, respectively, and about 16% of both pedons between 25 and 100 cm depth,
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the mineralogy control section of Soil Taxonomy (Soil Survey Staff 2010). Based
on optical analysis data, the weighted average percent of anhydrite in the control
section for these two soils are 2 and 17%, respectively.

It appears that anhydrite formation occurs principally by neoformation under
extreme conditions of salinity and temperature in these soils. These conditions
commonly take place in the capillary zone above the water table, where salts are
concentrated by a process referred to as “evaporative pumping” (Hsii and
Siegenthaler 1969). Al-Youssef et al. (2006) indicated that necessary conditions
for anhydrite formation were Na >0.13 pg L', C1>0.18 ug L', total dissolved
solids >0.32 pg L', and temperatures >25 °C. These concentrations are well below
levels of Na and CI in the saturated paste extracts. Anhydrite appears to initially
form nodules that later coalesce into layers or a mosaic of anhydrite. The Bz horizons
of pedons 5 and 6 have high amounts of anhydrite and are also the zone of maxi-
mum subsurface salinity (91 and 96 dS m™"). In these two Bz horizons, EC1:2
values are nearly double the horizon below and are only exceeded in the pedon by
the surface salt concentrations. They are the zones of minimum calcite concentra-
tion within the pedons (14 and 4%, respectively), and gypsum is about 5% of the
total amount of CaSO, minerals (anhydrite is 95% of the total). Anhydrite is also
present in horizons below and above this zone of maximum concentration, sug-
gesting that anhydrite formation fluctuates somewhat within the profile, likely due
to changes of water table depth or temperature. The Byzm horizon in pedon 6 has
larger anhydrite crystals than the two Bz horizons. This accounts for the high
amount of anhydrite as determined in the sand fraction by optical analysis. It also
suggests that this horizon may be the site of older deposits of anhydrite with larger,
better-developed crystals.

There is little physical evidence in these soils of alteration of gypsum to anhy-
drite as suggested by other researchers. Butler (1970) cited that anhydrite is con-
verted from gypsum by either dissolution-precipitation or conversion by
dehydration with or without bassanite as an intermediary. He identified solution
cavities in gypsum crystals with a rind of coarsely crystalline bassanite and traces
of anhydrite. Aref et al. (1997) cited the formation of anhydrite laths enclosing
relics of corroded gypsum. El-Tabakh et al. (2004) cited the presence of anhydrite
varying between vertically elongated and equidimensional shapes. They regarded
the former as an indication of gypsum as a precursor of anhydrite. In this study,
some grains of anhydrite in the surface horizons of pedons 5 and 6 were found to
have a lenticular appearance similar to gypsum. Figure 8.8a illustrates some grains
from the Akyzl horizon of pedon 5 with the high birefringence characteristic of
anhydrite, but with a common shape that is typical of gypsum, such as in the Bkyz
horizon of pedon 6 (Fig. 8.8b).

While soil and environmental conditions of this sabkha promote the formation
of anhydrite, it is commonly regarded that anhydrite readily converts to gypsum
upon exposure and common weathering conditions found in soils (Holliday 1970).
Conditions that promote this conversion do not likely exist in this sabkha, as well
as other landscapes in the Emirate. Evidence of the stability of anhydrite is present
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Fig. 8.8 (a) Weathered grains of anhydrite from the Akyz1 horizon of pedon 5. Cross polarized
light. Photo width=1.1 mm. (b) Gypsum crystal with lenticular morphology similar to Fig. 8.5a
from the Bkyz horizon of pedon 6. Cross polarized light. Photo width=2.5 mm

in anhydrite-rich outcrops scattered throughout the Emirate in upland landscape
positions.

Based on regional models of anhydrite formation (Shinn 1973), greater concen-
trations of anhydrite should be present further inland on the sabkha. Additional
evaluation of these landscapes should be conducted to determine the areas of great-
est anhydrite content. With further information, the soil maps can be better refined
relative to this mineral.

8.6 Conclusion

The formation of anhydrite is a regional phenomenon in hot desert climates of the
Middle East, commonly associated with saline coastal areas and a component of
carbonate deposition. Six pedons across a sabkha of Abu Dhabi, United Arab
Emirates, were sampled for analysis and characterization. Anhydrite was identified
and quantified in two of six pedons in this study. Anhydrite quantification by the
difference in the acetone dissolution method (gypsum +anhydrite) and weight loss
by thermal analysis (gypsum) appears reasonable as amethodology for quantification.
This method is in general agreement with other data (XRD, optical grain count of
sand) produced in the study. This method will prove useful for the quantification of
anhydrite for the purpose of classification of these soils in Soil Taxonomy or other
classification systems. Anhydrite quantification was one of the important require-
ments for inclusion of an anhydritic soil mineralogy family in Soil Taxonomy.

Overall, the presence of anhydrite is documented in the two pedons that are
located at the greatest distance from the coast. Zones of maximum anhydrite con-
centration are occurring in subsurface horizons above the water table, suggesting
that the capillary rise and evaporation of groundwater result in the concentration of
salts and formation of anhydrite under these environmental conditions.
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