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Abstract: Agricultural development across much of sub-Saharan Africa is constrained by the gap
in knowledge on site suitability for sustainably expanding irrigable lands to new areas. This study
aimed to identify the most suitable sites for promoting small-scale irrigation in Mali based on
environmental and land use/land cover criteria. Six thematic layers were integrated to consider the
water accessibility (distance from surface water and groundwater potential), soil, climate conditions,
slope, and land use/land cover. Subjective scores and weights were assigned to each of the six layers,
which were integrated to select the most suitable sites according to five categories ranging from ‘very
high’ to ‘very low’. Results indicated that 641,448 ha of land have a very high potential for small-scale
irrigation expansion: these are mostly located in the central Segou region (53% of the total very high
potential sites across the country) and around the capital district, Bamako, in southern Koulikoro
(38% of the total very high potential sites across the country). Sites ranked second as having high
potential are also distributed in southern Segou, central Koulikoro, and the western Kayes and Mopti
regions, totaling 20.8 Mha. Moderate potential sites are generally located in the northwestern and
southern parts accounting for 37.8 Mha of the country, whereas low and very low potential sites are
concentrated in the northern and eastern parts of the country over a total area of 65 Mha. The present
study demonstrates the usefulness of remote sensing and GIS techniques in agricultural development
planning at large-scale; similar methodologies can be applied in other sub-Saharan African countries.

Keywords: small-scale irrigation; spatial modeling and computing; remote sensing and GIS; machine
learning; mapping

1. Introduction

Rapid population growth, the adverse effects of climate change, global pandemics, and
political crises all increase the pressure on natural resources and food security, necessitating
substantial attention to meet such challenges. Expanding irrigated agricultural areas could
be considered one of the most important factors in addressing such issues and ensuring
food security. Irrigated agriculture, which consumes approximately 70% of freshwater
resources [1] and which accounts for about 40% of world crop production, is critical for
global food security and the well-being of a large portion of the world’s population [2].
Therefore, the selection of suitable sites for expanding irrigated agriculture can play a
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pivotal role in ensuring environmentally sustainable production systems and agricultural
development [3,4].

Although there are inter-country agreements in sub-Saharan Africa for sharing water
from large rivers, small-scale irrigation projects for soil and water conservation have his-
torically received less attention. Mali is a sub-Saharan African country that suffers from
land fragmentation and a limited contribution from small-scale irrigation to agricultural
systems, necessitating special and urgent attention. The country made substantial progress
in advancing its irrigation capacity through institutional and programmatic commitments.
For example, the Program for Increasing Agricultural Productivity started in 2011 with the
aim of developing an irrigation infrastructure able to cope with climate change-induced
adverse impacts on crop production. Yet, only 7% of 43.7 million hectares (Mha) of arable
land are being cultivated, of which only 14% are being irrigated, making it one of West
Africa’s most promising agricultural development destinations [5]. Irrigation can triple
or even quadruple the yield of rainfed agriculture, while it can also increase cropping
intensity. Investment in small-scale irrigation will not only improve household consump-
tion and production but will also lead to an increase in assets and income. In addition,
irrigation investment can enhance the socio-economic status of smallholders and reduce
their vulnerability to economic challenges. Previous research showed that small-scale
irrigation increases agricultural production [6], reduce farmer reliance on the unpredictable
rainfall that characterizes the climatic conditions of sub-Saharan Africa, facilitate economic
transactions, and improve community livelihood, wealth, and infrastructure [7]. Successful
implementation of small-scale irrigation depends on several factors among which selecting
the most suitable sites that consider various environmental and biophysical parameters for
long-term sustainability is the most important [8–10].

Remote sensing and Geographical Information Systems (GIS) are powerful tools that
can facilitate the identification and selection of potential sites for small-scale irrigation
promotion. However, most studies focused on only one or two factors, such as groundwater
accessibility and rainfall distribution [11–13]; further attention is required to integrate
multiple factors to develop a robust and comprehensive approach. These factors vary in
their relative importance and, therefore, assigning weights should be considered, using a
robust decision-making approach, such as the Analytical Hierarchy Process (AHP) [14–18].
This approach has many advantages [19], including an easily reasonable system, usability,
and quality assurance, because it has a strong mathematical foundation and is used in the
process of evaluating and selecting alternatives.

Using machine learning algorithms in remote sensing solved many problems asso-
ciated with mapping extensive and complex land use/land cover, and usually results
in better overall classification accuracies [20]. Due to its simplicity, speed, and accuracy,
Random Forests [21,22] is a very popular algorithm [23,24]. Random Forests is an ensemble
learning algorithm that uses decision tree classifiers, bagging, and bootstrapping as its base
learners. Decision trees are used as classifiers in the algorithm. Bootstrapping is used to
train each tree, which uses different samples from the training data. A random subset of
the predicting variables is also used to train each tree (in this case, the spectral bands of the
satellite image). Random Forests employs many decision trees (500–2000), each of which
casts a vote, with the majority vote determining the class prediction. In the present study,
we applied the Random Forests classification algorithm to obtain a recent land use/land
cover map, which was integrated with other parameters to determine the final potential
site map across the country. To the best of our knowledge, no research was conducted so
far on site suitability for irrigation development in Mali at the country level. Therefore, the
main objectives of the study were to: (i) identify and process the most relevant parameters
to site suitability for promoting small-scale irrigation; (ii) assign priority scores to classes in
each thematic layer and the weight of each layer; and (iii) select the most suitable sites for
promoting small-scale irrigation across Mali.
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2. Materials and Methods
2.1. Study Area

This research was carried out in Mali (Figure 1), the largest country in West Africa. It
is bounded to the north by Algeria, to the east by Niger, to the southeast by Burkina Faso,
and to the southwest by Guinea (Figure 1). About 22% of the country is semi-arid, 7.2%
is dry sub-humid, and the rest is arid [6]. During the rainy season (June to November),
the Niger River floods frequently, washing away soil nutrients and causing soil erosion.
The landscape in Mali is divided into four agroclimatic zones with a lower elevation in the
northern and western regions and a higher elevation in the southern and eastern regions
(Figure 1). The Sahara Zone is distinguished by its scarcity of water, hyper-aridity and
desertification, low rainfall (0–100 mm), and erratic and unpredictable weather patterns.
In addition, the soil in this zone is sandy and skeletal based on the origin of material,
with poor water-holding capacity. The second zone is the Sahelian, which has long dry
spells of 9–12 months. With rainfall ranging from 550 mm to 1100 mm, the Sudan zone
is semi-arid to sub-humid. The major crops in Mali are pearl millet (Cenchrus americanus
L.), sorghum (Sorghum bicolor L.), maize (Zea mays L.), rice (Oryza sativa L.), sugarcane
(Saccharum officinarum L.), and cotton (Gossypium hirsutum L.).
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Figure 1. Regions and elevation of Mali and shapefile of Africa with Mali location in red.

Agricultural industry significantly contributes to over 40% of the gross domestic prod-
uct and employs nearly 70% of the active population. Despite the significant groundwater
and surface water resources from the Niger River, cultivated land accounts for only 7%
of the country’s 43.7 Mha because of the insufficient use of surface water and the insuf-
ficient harnessing of groundwater for farming. Nevertheless, Mali’s irrigation capacities
recently advanced substantially compared with other sub-Saharan countries, and it has
high potential for expanding irrigable land.
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2.2. Methods of Analysis

Identifying potential sites for promoting small-scale irrigation for agricultural devel-
opment was achieved through the weighted integration of several thematic layers (Table 1).
The process began by determining the most relevant layers suitable for the development of a
small-scale irrigation system from the perspectives of the environment and land use/cover.
Assigning scores and weightages were performed based on the AHP model, where the
pairwise matrix of relevant importance was constructed corresponding to expert knowl-
edge and the published literature (Table 2) [3,4,10,25,26]. Figure 2 describes the conceptual
methodologies utilized in the present study.
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2.2.1. Accessibility to Surface Water

Accessibility to surface water is an essential criterion for economically expanding
irrigated crop lands to new areas [27]. The accessibility to surface water was determined by
measuring the distance between the mainstream of the Niger River using the Euclidean
distance method (Figure 3a). River streams for the country were derived from mosaicked
ASTER GDEM image tiles applying the Fill function, Flow direction, and Flow accumulation
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tools from the Hydrology toolset in ESRI ArcGIS 10.6. For generating streams and creating
stream order, the Strahler method within the Stream Order function in the Hydrology toolset
was used. The function generated eight classes of stream order with the main streams
having the highest value. The largest three classes were used to generate distance from
streams. The Euclidean distance from the main streams (Figure 3a) needed a subjective
judgment for classification. Several factors were considered in this judgment, such as
cost of canal construction and maintenance, power capacity, and water loss from canals.
Areas with a Euclidean distance <14 km were assigned a very high score, whereas areas
with a Euclidian distance >60 km were assigned a low to very low score (Table 1). This
classification is very similar to that reported by [28] who assigned areas within a 10 km
distance from surface water as being a highly suitable class in surface-irrigation land
suitability analysis.
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2.2.2. Land Use/Land Cover

Land use/land cover patterns were mapped by classifying Sentinel-2 10 m spatial
resolution satellite imagery obtained during the rainy season of 2021, from 15 June to the
end of September, utilizing the cloud-based platform Google Earth Engine for regional and
planetary scale earth-observation data retrieval and processing. Google Earth Engine has
the advantage of providing high-performance parallel computing resources to process large
datasets, which facilitates computationally cumbersome geospatial analysis. The platform
uses an application programming interface written in JavaScript or Python, which allows
data processing and visualization at scale. The platform was used to obtain Sentinel-2 multi-
spectral level-2A images that were processed in the present study. The processing of level-
2A products includes atmospheric correction applied to Top-Of-Atmosphere (TOA) level-
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1C orthoimage products to produce orthoimage Bottom-Of-Atmosphere (BOA) corrected
reflectance products using the Sen2Cor processor algorithm [29]. Level-2A images were
generated with spatial resolution of 10 m for bands 2, 3, 4, and 8, and 20 m resolution for
bands 5–7, 8A, 11, and 12.

The retrieved images were mosaiced to produce one image for the whole country
using R software v. 4.1.2 [30]. Nine land-use classes were classified using random forest
supervised classification utilizing the Random Forest package in R software [31] (Figure 4).
Random forests machine learning algorithms depend on a combination of tree predictors,
such that each tree represents the values of a random vector sampled independently with
a similar distribution for all trees in the forest [22]. The process started with the tuneRF
function that searches for optimal mtry, which controls the size of a feature set to search
the best split rules at each node of trees, and the values given in the input data. The
mosaiced Sentinel-2 image was then classified by the Random Forest object produced with
the optimal mtry. The nine classes were inferred from the ground truth data provided by
local experts, GIS specialists, and Google Earth high resolution data totaling 700 polygons.
The training data were then partitioned into 70% training and 30% validating using the
createDataPartition function in the R package cart. Corresponding values of the mosaiced
image at the location of the training data were extracted to create the predictor variables
and the response vector for the tuneRF function.
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Table 1. Assigned score, priority class, and % of total area of various quantiles from six different
themes used in the selection of most suitable sites for promoting small-scale irrigation across Mali.

Theme Resolution Quantile/Class Area (ha) % of Total Area (%) Priority Class Score
Assigned Source

Accessibility to
surface water

Distance from surface water (km) Equal intervals

0.5 km ≤14 13,917,188 11.08 Very high 1
14–29 14,080,954 11.21 High 2
29–60 27,731,454 22.09 Moderate 3
60–100 28,277,453 22.52 Low 4
>100 41,493,350 33.06 Very low 5

Land
use/land cover

Land use/land cover classes [25]

30 m Irrigated croplands 1,371,519 1.10 Very high 1
Rainfed croplands/rangelands 10,007,626 8.01 Very high 1
Grasslands/savannas 20,157,146 16.13 Moderate 3
Grasslands with
shrublands/croplands 13,234,702 10.59 High 2

Forests/shrublands 10,855,254 8.69 Low 4
Water 342,684 0.27 Low 4
Consolidated bare areas
(hardpans, gravels, bare rock,
stones)

41,137,082 32.92 Very low 5

Non-consolidated bare areas
(sandy desert) 26,393,019 21.12 Very low 5

Urban lands 1,470,857 1.18 Very low 5

Groundwater

Groundwater type and quantity [25,32]

30 m B-L: Basement-Low 887,891 0.727545 Low 4
B-M: Basement-Moderate 6,291,362 5.155194 Moderate 3
B-VL: Basement-Very low 3,050,316 2.499454 Very low 5
CSF-H: Consolidated
Sedimentary Fracture-High 7,002,489 5.737897 High 2

CSF-M: Consolidated
Sedimentary Fracture-Moderate 19,036,092 15.59833 Moderate 3

CSIF-H: Consolidated
Sedimentary
Intergranular/Fracture-High

15,797,166 12.94433 High 2

I-L: Igneous Intrusive-Low 674,418 0.552624 Very low 5
I-M: Igneous Intrusive-Moderate 2,669,599 2.187491 Low 4
U-H: Unconsolidated
Sedimentary-High 19,716,021 16.15547 Very high 1

U-L: Unconsolidated
Sedimentary-Low 2,845,219 2.331396 Low 4

U-LM: Unconsolidated
Sedimentary-Low to Moderate 16,138,821 13.22428 Moderate 3

U-M: Unconsolidated
Sedimentary-Moderate 24,654,245 20.20189 Moderate 3

U-VL: Unconsolidated
Sedimentary-Very low 3,275,649 2.684094 Very low 5

Soil

Soil type [25,33]

1 km Haplic Acrisols 522,206 0.68 High 2
Plinthic Acrisols 173,842 0.23 High 2
Brunic Arenosols 4,616,834 6.03 Low 4
Hypoluvic Arenosols 5,974,861 7.80 Moderate 3
Eutric Cambisols 11,019,569 14.39 Low 4
Vetric Cambisols 410,884 0.54 High 2
FLUVISOLS 124,572 0.16 Very high 1
Eutric Fluvisols 40,139 0.05 Very high 1
GLEYSOLS 5,366,349 7.01 Moderate 3
Haplic Gypsisols 1,392,952 1.82 Moderate 3
LEPTOSOLS 6,897,030 9.01 Very low 5
Gleyic Luvisols 310,444 0.41 High 2
Haplic Lixisols 5,024,235 6.56 High 2
Dystric Nitisols 393,609 0.51 High 2
Eutric Nitisols 585,270 0.76 High 2
Solodic Planosols 17,878 0.02 Moderate 3
Petric Plinthosols 6,107,698 7.98 Very low 5
Pisoplinthic Plinthosols 1,226,930 1.60 High 2
Eutric Regosols 9,420,639 12.30 Moderate 3
SOLONCHAKS 291,929 0.38 Low 4
Haplic Vertisols 1,093,455 1.43 Moderate 3
Pellic Vertisols 7,977 0.01 Moderate 3
VERTISOLS 137,516 0.18 Very high 1
Ferric Luvisols 9,547,278 12.47 Very high 1
LITHOSOLS 5,868,606 7.66 Very low 5
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Table 1. Cont.

Theme Resolution Quantile/Class Area (ha) % of Total Area (%) Priority Class Score
Assigned Source

Rainfall

Annual rainfall (mm) [25]

1 km 0–200 77,432,500 61.67 Very low 5
200–400 10,054,300 8.01 Low 4
400–600 11,937,600 9.51 Moderate 3
600–800 12,136,400 9.67 High 2
≥800 14,003,800 11.15 Very high 1

Slope

Slope (%) [3,4,25]

30 m 0–2 15,175,499 12.11 Very high 1
2–4 39,009,923 31.12 High 2
4–6 30,679,517 24.48 Moderate 3
6–8 17,416,586 13.9 Low 4
>9 23,070,395 18.41 Very low 5

The land-use classes were subjectively categorized according to their importance in
determining land suitability to promote the small-scale irrigation system. Irrigated land
was given a score of one because it is generally associated with very high recharge zones of
flood plains and buried channels, and is used to produce the target crops of the small-scale
irrigation system. Rainfed croplands and grasslands/savannas were also given a high score
because of possible high-water potential and water-holding capacity of the soil. In contrast,
the forest/shrublands, urban lands, and consolidated bare areas were given low scores due
to their influence on infiltration and runoff, and low water-holding capacity potential. The
reclassified priority score layer was downscaled to 30 m resolution. As shown in Figure 4a,
irrigated and rainfed croplands are mainly located in the Segou, Kouikoro, and Kayes
regions, whereas the northern parts of Tombouctou and Kidal are desert areas.

2.2.3. Groundwater

Groundwater is another important source of water for irrigation. A GIS dataset
of the country groundwater was obtained from the Africa Groundwater Atlas country
hydrogeology maps (Version 1.1, 2019), created by the British Geological Survey [32].
This atlas summarizes the groundwater resources for 48 African countries, including
Mali, with hydrogeology and geology attributes for each country. The hydrogeological
categories combine aquifer type and productivity, which are essential criteria needed in
the present analysis to determine groundwater potential for expanding irrigable land,
whereas the geological categories reflect significant hydrogeological units. Aquifer type is
categorized into four main categories based on the nature of groundwater flow and storage,
e.g., flow through pores, fractures, or karstic, with subdivisions of some categories. Aquifer
productivity was estimated based on borehole yield data as a proxy to relate the average
yield of a single effective well-developed borehole to the appropriate depth of relevant
aquifer (Table 1). Considering the hydrogeological characteristics of the groundwater, the
priority classes were assigned in the present study (Figure 5). For example, the Igneous
Intrusive-Low aquifer was assigned a very low score of five because it contains a low
amount of water, commonly forms at depth, and has interlocking crystals with very
low porosity, whereas the Unconsolidated-High aquifer was given a very high score of
one because of the high amount of groundwater stored in relatively higher permeable
materials, indicating easier extraction of water for irrigation purposes. The shapefile was
then rasterized to obtain the groundwater score raster layer ranging from very high to very
low scores.
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Table 2. Related studies on land suitability analysis in agriculture.

Objectives Methods Parameters Reference

Determine the suitability of land for surface irrigation GIS and AHP LULC, soil, topography (slope and altitude), and distance from
surface water [3]

Map suitable land for surface irrigation development GIS and AHP LULC, soil, slope, distance from surface water [4]
Evaluate land suitability for surface and drip irrigation RS and GIS Slope, soil texture, soil drainage, and soil chemical characteristics [10]

Assess land suitability for surface irrigation GIS and AHP Slope, LULC, soil depth, soil drainage, soil type, and distance from
surface water [28]

Develop land suitability map of lowland sub-basin area for
surface irrigation GIS and AHP slope, soil texture, depth, drainage characteristics, soil type and

LULC [9]

Identify suitable lands for agricultural development GIS and AHP Slope, elevation, LULC, soil moisture, distance from river, soil
characteristics, geology, aspect, distance from road [8]

Prioritize watersheds for productivity enhancement and
livelihood improvement RS and GIS Population, slope, rainfall, LULC, and soil [25]

Determine suitable lands for agricultural use GIS and AHP Parameters of great soil group, slope, aspect, elevation, and land
use capability class [34]

2.2.4. Soil

Soil type plays an important role in prioritizing areas suitable for promoting small-
scale irrigation in reference to its water-holding capacity and other associated physicochem-
ical characteristics. The Mali soil map was obtained from the Soil Atlas of Africa, created
by the European Commission [33], where several maps were elaborated by the European
Union, African Union, and the Food and Agriculture Organization of the United Nations
available online at https://esdac.jrc.ec.europa.eu/content/soil-map-soil-atlas-africa (ac-
cessed on 2 January 2022). Scores were subjectively assigned to each soil type considering
its characteristics of texture and organic matter content (Table 1). For example, loamy to

https://esdac.jrc.ec.europa.eu/content/soil-map-soil-atlas-africa
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clayey textures, such as the Fluvisols, were given the highest score of one as they indicate a
high water-holding capacity content and balanced nutrient supply. In contrast, soils over
hard rock or gravel, such as Leptosols, are usually low in organic matter and, therefore,
were given a very low score (Figure 6a,b). The Mali soil-type map shown in Figure 6a
indicates that fertile soils with a high water-holding capacity (Ferric Luvisols and Haplic
Lixisols) are distributed in the central and southern parts of the country in the Segou,
Sikasso, and Kouikoro regions (Figure 6a). Sandy soils with a low water-holding capacity
(Brunic Arenosols) are concentrated in the northern regions of Tomboctou and Kidal.
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2.2.5. Rainfall

Mean annual rainfall data for several locations across Mali over the past five years
from 2017 to 2021 were obtained from ground stations and the global meteorological
network, NASA Power [35]. The obtained data were interpolated across the country
at 1 km resolution using the kriging interpolation method in QGIS [36]. Areas receiving
>800 mm annual rainfall were ranked as highly suitable, assuming a good water-availability
zone, and mainly located in the southern region, while areas receiving <800 mm annual
rainfall were equally partitioned into four quadrants at 200 mm intervals and gradually
ranked (Table 1). Areas receiving <200 mm were assigned a very low score, assuming a
poor water-availability zone, and mainly located in the northern Sahara region (Figure 7),
similar to that assigned by [25]. This classification distinguished the driest areas in the
northern regions, Tombouctou, Gao, Kidal, and Menaka, from the humid areas in the
southern region, Sikasso, and the capital district, Bamaka (Figure 7).
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2.2.6. Slope

The slope gradient directly influences the infiltration rate of rainfall, such that a
steeper slope reduces the recharge rate as water runs rapidly off the surface, and vice
versa. The Space Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM) on a global scale at 30-m resolution by NASADEM was used to derive the slope in
percentage. The SRTM DEM data by NASADEM are high resolution with wide coverage,
and were obtained using Google Earth Engine. The resulting layer was then reclassified into
10 classes and scores were given accordingly (Table 1). The gentle slopes were given high
priority and steep slopes were given low priority (Figure 8), similar to that assigned by [25]
for watershed prioritization in Mali. Areas with slope <2% were classified as highly suitable
because low runoff contributes to a higher recharge rate of groundwater. In contrast, areas
with steep slope >9% were classified as highly unsuitable because of high runoff which
does not allow sufficient time to infiltrate the surface and recharge the groundwater.

2.3. Integration of Thematic Layers

Suitable small-scale irrigation areas were implemented in QGIS using the raster calcu-
lator algorithm, which allows algebraic operations on raster layers to be performed. First,
the weight of individual themes was determined based on the AHP as follows; first, the
generation of a pairwise comparison matrix that included all the thematic layers based
on the Saaty’s scale [37] of relative importance. This was determined according to expert
knowledge and the published literature [15,25–27,34]. Second, the consistancy ratio (CR)
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for checking the degree of consistency among the assigned ratings was calculated. This CR
calculation included two steps; first, calcualting the consistency index (CI) as follows:

CI =
C(λmax − n)

(n − 1)
(1)

where λmax is the largest maximum eigenvalue of the comparative matrix and n is the rank
of the matrix. Second, the CR is estimated by dividing the CI by the random index. The
consistency ratio made up 5%, which is lower than the threshold of 10% [35], indicating an
acceptable consistency value. Otherwise, if the consistency ratio is ≥10%, the subjective
judgment must be revised. According to the analysis, accessibility to surface water had the
highest weight of 23.8%, followed by LULC at 21.8% and groundwater at 16.5% (Table 3).
The higher the weight of the layer, the greater importance it has in determining suitable
areas for promoting SSI.
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Table 3. The pairwise comparison matrix among the thematic layers for suitable small-scale irrigation areas.

Accessibility to
Surface Water

Land Use/Land
Cover Groundwater Soil Rainfall Slope Weightage Weightage %

Accessibility to
surface water 1 0.238 23.8

Land use/land
cover 1 1 0.218 21.8

Groundwater 1 1 1 0.165 16.5
Soil 0.33 0.5 1 1 0.132 13.2
Rainfall 0.5 0.5 2 1 1 0.148 14.8
Slope 0.5 0.5 0.5 1 0.5 1 0.099 9.9
Consistency ratio 5 % (consistency is acceptable)
Sum 1 100
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Following the determination of each layer weight, the reclassified layers with scores
ranging from one to five were integrated in weighted overlay analysis as follows:

SSPp = ∑Tss × Fw (2)

where SSPp is the SSI priority score for each pixel of the final integrated priority layer, Tss
is the selected SSI priority layer, and Fw is the weightage factor of the layer.

3. Results and Discussion
3.1. Selection and Weight of Thematic Layers

Site selection is an essential step for agricultural development planning because it
provides information about the constraints and opportunities of the area being investi-
gated. The present study focuses on determining the most suitable sites for implementing
irrigation projects for small-scale farmers. Therefore, selection of relevant thematic lay-
ers is a crucial component of this study and was achieved by reviewing the relevant
literature on site suitability in agriculture (Table 2). Selection also took into account the
knowledge of experts already working on implementing irrigation projects in Mali and
co-authoring this article. Table 2 explores some of the previous research on site-suitability
evaluation in agriculture and the methodologies used. Most of these studies used the
AHP method [3,4,15,16,25,34], which is a multiple-criteria-making method that scores the
selected layers relative to each other in a pairwise comparison matrix. By looking at previ-
ously conducted studies on suitability for irrigation development planning, selected layers
mainly included accessibility to water sources and physical land features, such as soil and
slope, and LULC [3,4]. Girma et al. [4] considered distance to the perennial rivers as the
most important factor with a 35% weight for surface irrigation site-suitability selection.
Similarly, Hagos et al. [3] assigned the highest score of 33% to distance from water sources,
whereas they assigned the lowest score of 3.3% to LULC. Similar thematic layers were
considered in the present study and included the groundwater potential in the access-to-
water resources analysis. Agreeing with Girma et al. [4] and Hagos et al. [3], the highest
weight was assigned to the accessibility-to-surface-water thematic layer, whereas the LULC
layer was also indicated as an important layer due to the heterogeneity of the large land
area investigated in the present study. Other important factors are rainfall and soil as
they impact the vegetation cover and water resources. The last layer was the slope which
influences the infiltration and runoff rates and, consequently, the groundwater recharge
rate, agreeing with others [3,4,10,38] who considered the slope in site suitability for surface
irrigation planning. Following the selection of thematic layers, priority scores within each
thematic layer were assigned based on the available sources from the literature and expert
judgement (Table 1). A similar approach was used for land-suitability mapping in other
studies where expert opinions were used to determine the selected parameters, whereas
the AHP method was used to obtain the weights [8].

3.2. Cross Validation of Introplated Layer and Land Use/Land Cover Map

The cross validation of the cumulative annual rainfall interpolation results indicated
good agreement with the observed data as indicated by the R2 value of 0.93 and RMSE
value of 92.5 mm (Figure 9). The resulting interpolated thematic annual rainfall layer
shows a wide range of annual rainfall variations with values ranging from <10 mm and
>1000 mm, representing various agro-climatic zones across the country (Figure 7). This
indicates satisfactory prediction by the kriging method, which is considered to be one
of the best methods of interpolation. Abtew et al. [38] compared six methods of spatial
interpolation for monthly rainfall and concluded that the kriging method is one of the best
three methods with the advantage of providing estimates of the error interpolation. It uses
a limited set of sampled data points to extend the value of the variable over a continuous
spatial extent. The main difference from other methods, such as Inverse Distance Weighted
Interpolation, Linear Regression, or Gaussian, is that it uses the spatial correlation between
sampled points: the interpolation is, therefore, based on the spatial arrangement of the
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empirical observations rather than on the presumed model of spatial distribution. This
means that a higher autocorrelation among the sample points is needed for kriging to
outperform the other methods, which was the case in the present study.
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For the LULC validation, the ground truth data were partitioned into 70/30% for
training and validating the classified Sentile-2 image. The classified nine classes were
compared against 210 ground truth points provided by local experts and online resources,
such as Google satellite maps for uncovered areas, particularly in northern sub-Saharan
regions, to cover the spatial extent of the country. According to the error matrix, the
accuracy assessment of users ranged from 50% to 100%, while the producer accuracy
assessment ranged from 54.5% to 93.9%. The highest accuracy assessment of users related
to consolidated and non-consolidated bare areas, followed by grasslands/savannas and
forest/shrublands, and irrigated croplands. Interestingly, the accuracy assessment of
producers for irrigated croplands was >90%. Out of the 210 validation points, 172 matched
the derived classification results with an overall accuracy of 82% and a Kappa coefficient
value of 0.79 (Table 4). These results indicate good performance of the random forest
classification algorithm in large data classification, which is considered to be one of the
most successful ensemble machine learning methods with several advantages. In the
present study, the random forest algorithm outperformed other supervised-classification
methods, such as support vector machine, due to its ability to deal with large data with fast
model fitting and, therefore, producing accurate prediction for high-dimensional data [21].
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Table 4. Accuracy assessment of land use/land cover map presented in Figure 4 using error matrix method.

Classes Reference Data

D
er

iv
ed

cl
as

si
fic

at
io

n

01 02 03 04 05 06 07 08 09 RT UA
01. Irrigated croplands 32 2 0 0 4 2 0 0 0 40 80%
02. Rainfed-croplands 1 12 1 8 2 0 0 0 0 24 50%
03. Grasslands/savannas 0 0 20 0 0 0 2 1 0 23 87%
04. Grasslands with shrublands/croplands 0 5 0 9 0 0 0 0 0 14 64.3%
05. Forests/shrublands 2 2 0 1 24 0 0 0 0 29 82.8%
06. Water 0 0 0 0 0 10 0 0 2 12 83.3%
07. Consolidated bare areas (hardpans, gravels, bare rock, stones,
boulders) 0 0 0 0 0 0 16 0 0 16 100%

08. Non-consolidated bare areas (sandy desert) 0 0 0 0 0 0 0 14 0 14 100%
09. Urban lands 0 1 0 0 1 0 0 0 31 33 93.9%
Column total 35 22 21 18 31 12 18 15 33 205
Producers’ accuracy 91.4% 54.5% 95.2% 50% 77.4% 83.3% 88.9% 93.3% 93.9%

RT: Row totals; UA: Users accuracy; Overall classification accuracy = 82%; Kappa coefficient = 0.79.
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3.3. Integration of Thematic Layers for Site Selection

Following the reclassification of the six thematic maps to five scores, the maps were
integrated on the basis of the SSPp with five priority classes ranging from very high to
very low (Figure 10). The assigned scores were used to standardize the priority classes for
heterogeneous data by bringing them into a common domain of scaling. Results indicate
that very high priority areas are located in central Segou and southern Koulikoro, with
340,384 ha in Segou and 243,512 ha in Koulikoro, accounting for 53% and 38% of the very
high priority areas, respectively (Table 5). Within the very high priority sites of 641,448 ha,
there is a high potential to expand irrigable land for sustainable agricultural development in
the long term with an expected high internal rate of return. These results closely agree with
the previously published report [39] on smart irrigation strategies in Mali that indicated
about 0.3 Mha are very highly suitable for small-scale irrigation expansion. Areas of
potentially irrigable land exceed 2.2 Mha for large or small-scale irrigation, as determined
by the size of the installations [40]. Large-scale irrigation includes large areas over 100 ha
which require large hydraulic structures, such as dams, whereas small-scale irrigation
involves local irrigation managed by individual farmers or farmer organizations. Irrigation
investment in Mali is long standing, with the creation of the Niger Office, a large irrigation
scheme in the Segou region which includes 53% and 19% of the very high and high priority
sites, respectively, in the present study (Table 5). These results demonstrate the efficacy of
the implemented conceptual framework to select potential sites for expanding irrigable
lands. High priority sites are distributed in the northern and southern Segou regions, in
central to northwestern and southern Koulikoro, in northeastern Sikasso, northwestern
Kayes, and in central and southwestern Mopti (Table 5). The Koulikoro and Kayes regions
include about 42% of the total high potential sites, which indicates promising regions
for irrigation project investments, particularly around the capital district, Bamako, in the
Koulikoro region. In other words, investments in promoting small-scale irrigation are also
possible to provide supplemental irrigation to rainfed croplands/rangelands to prevent
dryland yield fluctuations due to prolonged drought events associated with a changing
climate. The third class of moderate priority site is mainly located in the northeastern Kayes
region, in eastern and southern Mopti and Sikasso, in southern and central parts of Goa, and
in a small part of southern Tombouctou, giving a total area of 37.9 Mha (Figure 10, Table 5).
Sites within the moderate priority regions can be devoted to grasslands/savannas where
water scarcity is a major constraint for agricultural development. Central and northern
parts of Tombouctou, most of Kidal, and northern Gao and Menaka are categorized as low
and very low priority sites for a total area of 65 Mha due to the low rainfall, extreme weather,
and infertile soil and, therefore, are not recommended for promoting irrigation projects.

The weight of each layer was determined based on the AHP method, which organizes
the decision problem into several levels. Layers dealing with water availability and LULC,
either surface or groundwater, were given a higher weight compared with other thematic
layers as water scarcity is one of the main constraints to agricultural development in Mali.
The next important layers were rainfall amount, soil, and slope. The northern parts of the
country are generally categorized as a hyper-arid zone with <50 mm annual rainfall and,
therefore, are not suitable for agricultural development. Areas far from surface water and
areas with deep and low-yield groundwater are also unsuitable for irrigation installation
investment. In contrast, areas near the Niger River, or those having groundwater in
high quantities, are the most suitable for promoting small-scale irrigation as long-term
investment for improving the livelihoods of smallholders. Irrigated crops may include
cash crops, such as cotton and fodders or vegetables, which will indeed increase the
sustainability of the system and the welfare of the farmers.
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of Mali.

Another important factor that was considered in this study is the percentage of slope
as it influences the runoff and soil drainage, as well as vulnerability to erosion. In addition,
developing a successful irrigation investment plan requires considering the land use/land
cover to focus on irrigated crops and to determine potential areas for expanding irrigable
land for crop production. Soil type is also important when considering suitability for
expanding irrigable areas for agricultural development. Soil texture greatly impacts soil
water-holding capacity, which enhances irrigation efficiency and the water productivity
of crops. The detailed Mali soil map created by the European Commission was used and
assigned scores, classifying the soil types from high to low according to their physical
and organic matter properties. Therefore, considering all these factors, it was necessary to
produce the final thematic layer that could determine the most suitable areas for promoting
small-scale irrigation across the country.
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Table 5. Area (ha) of each priority score shown in Figure 9 for nine regions and one capital district. Percentages in parentheses represent percentages from row sum
and percentages from column sum, respectively.

Regions Very High High Moderate Low Very Low Row Sum

Bamako 1380
(5.6%, 0.21%)

23,159
(94.3%, 0.11%) - - - 24,538

Koulikoro 243,512
(2.68%, 38%)

4,490,139
(49.4%,21.5%)

4,099,692
(45%,10.8%)

241,935
(2.6%, 0.48%)

98
(0.01%, 0.0062%) 9,075,377

Kayes 6504
(0.059%, 1%)

4,449,044
(36%, 21.3%)

6,752,207
(54.9%, 17.8%)

1,074,172
(8.7%, 2.1%) 12,281,927

Sikasso 26,509
(0.37%, 4.1%)

2,738,449
(38%, 13%)

4,150,247
(58.9%, 11%)

127,817
(1.8%, 0.2%) - 7,043,022

Segou 340,384
(5.5%, 53%)

4,079,982
(66%, 19%)

1,639,147
(26.6%, 4.3%)

91,255
(1.4%, 0,18%) - 6,150,769

Mopti 23,159
(0.29%, 3.6%)

2,369,782
(30%, 13%)

4,765,284
(60%, 12.5%)

712,403
(9%, 1.4%)

10,150
(0.12%, 0.64%) 7,880,777

Gao - 858,648
(17%, 4%)

5,007,811
(49%, 13%)

4,066,777
(40%; 8%)

138,558
(1.3%; 0.8%) 10,071,793

Tombouctou - 850,173
(17%, 4%)

6,461,097
(12.9%, 17%)

32,080,100
(64%; 64%)

10,353,740
(20.8%; 65%) 49,745,112

Kidal - - 676,531
(4.5%, 1.8%)

9,114,105
(61%, 18.3%)

5,120,353
(34%, 32%) 14,910,989

Menaka - 1,001,740
(13%, 4.8%)

4,313,147
(56%, 11.4%)

2,222,945
(28.8%, 4%)

157,085
(2%, 0.9%) 7,694,917

Column sum 641,448 20,861,115 37,865,163 49,731,509 15,779,986 124,879,221
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4. Conclusions

The results of the present study illustrate the efficacy of the spatial modeling approach
in site selection for agricultural development and smallholder livelihoods and welfare. Re-
mote sensing and GIS are powerful tools to process and obtain spatial data for agricultural
development purposes. The process began with identifying the most relevant layers for
promoting small-scale irrigation from the perspectives of water availability, climate and
soil, and land use/land cover. Next, subjective scores for various distributions/classes were
assigned within each layer for consistency. Finally, weights were allocated to spatial data to
combine the layers and calculate the ranked sites map across the country. The obtained
results provided the precise location of ‘high’ vs. ‘low’ potential sites and percentage areas
of these sites. Overall, across Mali, the central regions in Segou and those near the capital
district, Bamako, are more favorable for the promotion of small-scale irrigation infrastruc-
ture than the northern regions where the climate is very dry, and the soil has low fertility
status. This also agrees with the land use/land cover map where irrigated and rainfed
croplands and grassland with shrublands/croplands are mostly located in central and
western regions, whereas northern regions are sandy desert or include hardpans, gravels,
or bare rock/stones. The present methodologies can be implemented in other sub-Saharan
African countries for agricultural development planning at large scale to enhance long-term
sustainability of natural resources, increase crop production, and smallholder well-being.
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